首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flexion relaxation (FR) is characterized by the lumbar erector spinae (LES) becoming myoelectrically silent near full trunk flexion. This study was designed to: (1) determine if decreasing the lumbar moment during flexion would induce FR to occur earlier; (2) characterize thoracic and abdominal muscle activity during FR. Ten male participants performed four trunk flexion/extension movement conditions; lumbar moment was altered by attaching 0, 5, 10, or 15 lb counterweights to the torso. Electromyography (EMG) was recorded from eight trunk muscles. Lumbar moment, lumbar flexion and trunk inclination angles were calculated at the critical point of LES inactivation (CPLES). Results demonstrated that counterweights decreased the lumbar moment and lumbar flexion angle at CPLES (p < 0.0001 and p = 0.0029, respectively); the hypothesis that FR occurs earlier when lumbar moment is reduced was accepted. The counterweights did not alter trunk inclination at CPLES (p = 0.1987); this is believed to result from an altered hip to spine flexion ratio when counterweights were attached. Lumbar multifidus demonstrated FR, similar to LES, while thoracic muscles remained active throughout flexion. Abdominal muscles activated at the same instant as CPLES, except in the 15 lb condition where abdominal muscles activated before CPLES resulting in a period of increased co-contraction.  相似文献   

2.
Repetitive trunk flexion elicits passive tissue creep, which has been hypothesized to compromise spine stability. The current investigation determined if increased spine flexion angle at the onset of flexion relaxation (FR) in the lumbar extensor musculature was associated with altered dynamic stability of spine kinematics. Twelve male participants performed 125 consecutive cycles of full forward trunk flexion. Spine kinematics and lumbar erector spinae (LES) electromyographic (EMG) activity were obtained throughout the repetitive trunk flexion trial. Dynamic stability was evaluated with maximum finite-time Lyapunov exponents over five sequential blocks of 25 cycles. Spine flexion angle at FR onset, and peak LES EMG activity were determined at baseline and every 25th cycle. Spine flexion angle at FR increased on average by 1.7° after baseline with significant increases of 1.7° and 2.4° at the 50th and 100th cycles. Maximum finite-time Lyapunov exponents demonstrated a transient, non-statistically significant, increase between cycles 26 and 50 followed by a recovery to baseline over the remainder of the repetitive trunk flexion cycles. Recovery of dynamic stability may be the consequence of increased active spine stiffness demonstrated by the non-significant increase in peak LES EMG that occurred as the repetitive trunk flexion progressed.  相似文献   

3.
The current study examined of the effect of intermittent, short-term periods of full trunk flexion on the development of low back pain (LBP) during two hours of standing. Sixteen participants completed two 2-h standing protocols, separated by one week. On one day, participants stood statically for 2 h (control day); on the other day participants bent forward to full spine flexion (termed flexion trials) to elicit the flexion relaxation (FR) phenomenon for 5 s every 15 min (experimental day). The order of the control and experimental day was randomized. During both protocols, participants reported LBP using a 100 mm visual analogue scale every 15 min. During the flexion trials, lumbar spine posture, erector spinae and gluteus medius muscle activation was monitored. Ultimately, intermittent trunk flexion reduced LBP by 36% (10 mm) at the end of a 2-h period of standing. Further, erector spinae and gluteus medius muscle quietening during FR was observed in 91% and 65% of the flexion trials respectively, indicating that periods of rest did occurred possibly contributing to the reduction in LBP observed. Since flexion periods do not require any aids, they can be performed in most workplaces thereby increasing applicability.  相似文献   

4.
We examined the influence of the application of postural taping on the kinematics of the lumbo–pelvic–hip complex, electromyographic (EMG) activity of back extensor muscles, and the rating of perceived exertion (RPE) in the low back during patient transfer. In total, 19 male physical therapists with chronic low back pain performed patient transfers with and without the application of postural taping on the low back. The kinematics of the lumbo–pelvic–hip complex and EMG activity of the erector spinae were recorded using a synchronized 3-D motion capture system and surface EMG. RPE was measured using Borg’s CR-10 scale. Differences in kinematic data, EMG activity, and RPE between the two conditions were analyzed using a paired t-test. Peak angle and range of motion (ROM) of lumbar flexion, EMG activity of the erector spinae, and RPE decreased significantly, while peak angle and ROM of pelvic anterior tilt and hip flexion increased significantly during patient transfer under the postural taping condition versus no taping (p < 0.05). These findings suggest that postural taping can change back extensor muscle activity and RPE as well as the kinematics of the lumbo–pelvic–hip complex in physical therapists with chronic low back pain during patient transfer.  相似文献   

5.
Sustained maximum lumbar spine flexion can increase the angle at which the low back flexion relaxation phenomenon (FRP) is observed. This adaptation has been hypothesized to have implications for the control of lumbar spine stability and increase the potential for low back injury. The objective of this study was to investigate if similar changes in the FRP would occur from sub-maximal spine flexion induced by an extended continuous duration of seated office deskwork. Twenty-three participants (12 male and 11 female) performed three bouts of full forward spine flexion interspersed with two 1-h periods of seated deskwork. Lumbar spine angular kinematics and electromyographic activity from the lumbar erector spinae were obtained throughout all trials. The angles at which myoelectric silence occurred (FRP onset) were documented. Lumbar flexion at FRP onset increased by 1.3 ± 1.5° after 1-h of sitting (p < 0.05) with no further increase after 2-h. However, when the angle at the FRP onset was normalized to the total range of flexion, there was no difference in the FRP onset. These results suggest that the seated posture may induce residual deformation in the viscoelastic passive tissues of the low back; this could increase the challenge of controlling spine motion and reduce the load-bearing capacity of the lumbar spine system during activities performed following extended bouts of sitting.  相似文献   

6.
The objective of this study was to determine the magnitude and phasic relationship of the torso muscles in rotation–flexion of varying degree of asymmetries of the trunk. Nineteen normal young subjects (7 males and 12 females) were stabilized on a posture stabilizing platform and instructed to assume a flexed and right rotated posture. A combination 20°, 40° and 60° of rotation and 20°, 40° and 60° of flexion resulted in nine postures. These postures were assumed in a random order. The subjects were asked to exert their maximal voluntary isometric contraction (MVC) in the plane of rotation of the posture assumed for a period of 5 s. The surface EMG from the external and internal obliques, rectus abdominis, latissimus dorsi and erector spinae at the 10th thoracic and 3rd lumbar vertebral levels was recorded. The abdominal muscles had the least response at 40° of flexion, the dorsal muscles had the highest magnitude.With increasing right rotation, the left external oblique continued to decrease its activity. The ANOVA revealed that rotation and muscles had a significant main effect on normalized peak EMG (p < 0.02) in both genders. There was a significant interaction between rotation and flexion in both genders (p < 0.02) and rotation and muscle in females. The erector spinae activity was highest at 40° flexion, due to greater mechanical disadvantage and having not reached the state of flexion–relaxation. The abdominal muscle activity declined with increasing asymmetry, due to the decreasing initial muscle length. The EMG activity was significantly affected by rotation than flexion (p < 0.02).  相似文献   

7.
Repetitive exposures to altered gait and movement following lower-limb amputation (LLA) have been suggested to contribute to observed alterations in passive tissue properties and neuromuscular control in/surrounding the lumbar spine. These alterations, in turn, may affect the synergy between passive and active tissues during trunk movements. Eight males with unilateral LLA and eight non-amputation controls completed quasi-static trunk flexion–extension movements in seven distinct conditions of rotation in the transverse plane: 0° (sagittally-symmetric), ±15°, ±30°, and ±45° (sagittally-asymmetric). Electromyographic (EMG) activity of the bilateral lumbar erector spinae and lumbar kinematics were simultaneously recorded. Peak lumbar flexion and EMG-off angles were determined, along with the difference (“DIFF”) between these two angles and the magnitude of peak normalized EMG activities. Persons with unilateral LLA exhibited altered and asymmetric synergies between active and passive trunk tissues during both sagittally-symmetric and -asymmetric trunk flexion movements. Specifically, decreased and asymmetric passive contributions to trunk movements were compensated with increases in the magnitude and duration of active trunk muscle responses. Such alterations in trunk passive and active neuromuscular responses may result from repetitive exposures to abnormal gait and movement subsequent to LLA, and may increase the risk for LBP in this population.  相似文献   

8.
Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied.The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion–extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion–extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded.Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion.The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain.  相似文献   

9.
Objectives(A) Describe a new method of investigation of the possible muscular effects of the commonly practiced Mills manipulation for lateral elbow pain (epicondylalgia), (B) ascertain if myoelectric activity is influenced during the pre-manipulative stretch for Mills manipulation, (C) establish whether muscle responses are influenced by ipsilateral lateral flexion of the cervical spine which reduces mechanical tension in the peripheral nerves of the upper limb.SampleEight asymptomatic subjects were tested bilaterally (N = 16).MethodsMyoelectric measurements – EMG signals were recorded with a 16 channel pocket EMG patient unit and processed off-line. Measurement of joint positions-three CCD adjustable cameras sensitive to 10 mm reflective passive markers applied at specific locations on the subjects’ bodies were used to reconstruct and verify accuracy of body movements and were correlated with EMG recordings.ResultsCompared with the standard (anatomical) position of the cervical spine in which Mills manipulation is typically performed, cervical spine ipsilateral lateral flexion produced significantly reduced activity in muscles that restrain the manipulation movement (elbow extension), namely biceps brachii (P = 0.018) and brachioradialis (P = 0.000). The affected muscles may therefore produce protective effects during the manipulation.ConclusionsChanges in myoelectric activity were in a pattern that suggests that muscle and neural mechanisms may be an integral part of the Mills manipulation. Cervical spine ipsilateral lateral flexion may be used to reduce mechanical stresses in the peripheral nerves and extraneous muscle activity, making Mills’ manipulation potentially safer and more specific.  相似文献   

10.
The purpose of the study was to explore changes in the spatial distribution of erector spinae electromyography amplitude during static, sustained contractions and during contractions of increasing load. Surface electromyographic (EMG) signals were detected from nine healthy subjects using a grid of 13 × 5 electrodes placed unilaterally over the lumbar erector spinae musculature. Subjects stood in a 20° forward flexed position and performed: (1) six 20-s long contractions with loads ranging from 2.5 kg to 12.5 kg (2.5 kg increments) and (2) a 6 min sustained contraction with 7.5 kg load. Root mean square (RMS) and mean power spectral frequency (MNF) were computed from the recorded EMG signals. EMG RMS increased (P < 0.0001) and MNF remained constant during contractions of increased load. During the sustained contraction, MNF decreased (P < 0.0001) and RMS did not change over time. The centroid (center of activity) of the RMS map shifted caudally (P < 0.0001) with time during the sustained contraction but did not change with varying load. These results suggest a change in the distribution of erector spinae muscle activity with fatigue and a uniform distribution of muscle activation across loads.  相似文献   

11.
The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39–167%) during squats with instructions compared to the other squat conditions (P = 0.04–0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P = 0.04–0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.  相似文献   

12.
BackgroundChanges in activation patterns of hip extensors and pelvic stabilizing muscles are recognized as factors that cause low back disorders and these disturbances could have an impact on the physiological loading and alter the direction and magnitude of joint reaction forces.ObjectiveTo investigate activation patterns of the gluteus maximus, semitendinosus and erector spinae muscles with healthy young individuals during four different modalities of therapeutic exercise.MethodsThirty-one volunteers were selected: (16 men and 15 women), age (24.5 ± 3.47 years), body mass of 66.89 ± 11.89 kg and a height of 1.70 ± 0.09 m). They performed four modalities of therapeutic exercise while the electromyographic activity of the investigated muscles was recorded to determine muscle pattern activation for each exercise.ResultsRepeated measure ANOVA revealed that muscle activation patterns were similar for the four analyzed exercises, starting with the semitendinosus, followed by the erector spinae, and then, the gluteus maximus. The gluteus maximus was the last activated muscle during hip extension associated with knee flexion (p < 0.0001), knee extension (p < 0.0001), and with lateral rotation and knee flexion (p < 0.05).ConclusionFindings of the present study suggested that despite individual variability, the muscle firing order was similar for the four therapeutic exercises.  相似文献   

13.
Little is known about the motor control of the lumbo-pelvic musculature in microgravity and its simulation (bed-rest). Analysis of spectral and temporal electromyographic variables can provide information on motor control relevant for normal function. This study examined the effect of 56-days of bed-rest with 1-year follow-up in 10 male subjects on the median frequency and the activation timing in surface electromyographic recordings from five superficial lumbo-pelvic muscles during a repetitive knee movement task. Trunk fat mass (from whole body-composition measurements) and movement accuracy as possible explanatory factors were included. Increased median frequency was observed in the lumbar erector spinae starting late in bed-rest, but this was not seen in its synergist, the thoracic erector spinae (p < .0001). These changes persisted up to 1-year after bed-rest and were independent of changes in body-composition or movement accuracy. Analysis suggested decreases of median frequency (p < .0001) in the abdominal and gluteal muscles to result from increased (p < .01) trunk fat levels during and after bed-rest. No changes in lumbo-pelvic muscle activation timing were seen. The results suggest that bed-rest particularly affects the shorter lumbar erector spinae and that the temporal sequencing of superficial lumbo-pelvic muscle activation is relatively robust.  相似文献   

14.
Muscle forces stabilize the spine and have a great influence on spinal loads. But little is known about their magnitude. In a former in vitro experiment, a good agreement with intradiscal pressure and fixator loads measured in vivo could be achieved for standing and extension of the lumbar spine. However, for flexion the agreement between in vitro and in vivo measurements was insufficient. In order to improve the determination of trunk muscle forces, a three-dimensional nonlinear finite element model of the lumbar spine with an internal fixation device was created and the same loads were applied as in a previous in vitro experiment. An extensive adaptation process of the model was performed for flexion and extension angles up to 20 degrees and -15 degrees, respectively. With this validated computer model intra-abdominal pressure, preload in the fixators, and a combination of hip- and lumbar flexion angle were varied until a good agreement between analytical and in vivo results was reached for both, intradiscal pressure and bending moments in the fixators. Finally, the fixators were removed and the muscle forces for the intact lumbar spine calculated. A good agreement with the in vivo results could only be achieved at a combination of hip- and lumbar flexion. For the intact spine, forces of 170, 100 and 600 N are predicted in the m. erector spinae for standing, 5 degrees extension and 30 degrees flexion, respectively. The force in the m. rectus abdominus for these body positions is less than 25 N. For more than 10 degrees extension the m. erector spinae is unloaded. The finite element method together with in vivo data allows the estimation of trunk muscle forces for different upper body positions in the sagittal plane. In our patients, flexion of the upper body was most likely a combination of hip- and lumbar spine bending.  相似文献   

15.
The PLAD (personal lift assistive device) was designed to reduce the lumbar moment during lifting and bending tasks via elastic elements. This investigation examined the effects of modulating the elastic stiffness. Thirteen men completed 90 lifts (15 kg) using 6 different PLAD stiffnesses in stoop, squat and freestyle lifting postures. The activity of 8 muscles were recorded (latissimus dorsi, thoracic and lumbar erector spinae, rectus abdominis, external oblique, gluteus maximus, biceps femoris and rectus femoris), 3D electromagnetic sensors tracked the motion of each segment and strain gauges measured the elastic tension. EMG data were rectified, filtered, normalized and integrated as a percentage of the lifting task. The highest PLAD tension elicited the greatest reduction in erector spinae activity (mean of thoracic and lumbar) in comparison to the no-PLAD condition for the stoop (37%), squat (38%), and freestyle (37%) lifts, while prompting comparable reductions in gluteus maximums and biceps femoris activity. The highest PLAD stiffness also elicited the greatest reduction in the integrated L4/L5 flexion moment for the stoop (19.0%), squat (18.4%) and freestyle (17.4%) lifts without changing peak lumbar flexion. Each increase in PLAD stiffness further reduced the muscle activity of the posterior chain and the dynamic lumbar moment.  相似文献   

16.
This study aimed to evaluate the validity and test–retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r = 0.74−0.85; P < 0.001) and between EMG activity and submaximal isometric torque (r  0.99; P < 0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from −3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test–retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes.  相似文献   

17.
18.
The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain.  相似文献   

19.
Hip and lumbar spine disorders often coexist in patients with total hip arthroplasty (THA). The current study aimed to reveal pelvic motion pathology and altered trunk and hip muscle recruitment patterns relating to pelvic motion in patients with THA. Twenty-one women who underwent THA and 12 age-matched healthy women were recruited. Pelvic kinematics and muscle recruitment patterns (i.e., amplitude, activity balance, and onset timing) of the gluteus maximus, semitendinosus, multifidus, and erector spinae were collected during prone hip extension. Compared with healthy subjects, the patients showed increased pelvic motion, especially ventral rotation, decreased multifidus muscle activity relative to the hip extensors, and delayed onset of multifidus activity, despite reaction times and speeds of leg motion not being significantly different between the groups. Furthermore, while contributing factors associated with ventral pelvic rotation were not found, delayed onset of multifidus activity was detected as a factor related to the increased anterior tilt of the pelvis (r = 0.47, p < 0.05) in patients with THA. These results suggest that patients with THA have dysfunction of the stabilizer muscles of the lumbopelvic region along with increased pelvic motion.  相似文献   

20.
Accurately describing trunk muscle coactivation is fundamental to quantifying the spine reaction forces that occur during lifting tasks and has been the focus of a great deal of research in the spine biomechanics literature. One limitation of previous approaches has been a lack of consideration given to the variability in these coactivation strategies. The research presented in this paper is an empirical approach to quantifying and modeling trunk muscle coactivation using simulation input modeling techniques. Electromyographic (EMG) data were collected from 28 human subjects as they performed controlled trunk extension exertions. These exertions included isokinetic (10 and 45°/s) and constant acceleration (50°/s/s) trunk extensions in symmetric and asymmetric (30°) postures at two levels of trunk extension moment (30 and 80 Nm). The EMG data were collected from the right and left pairs of the erector spinae, latissimus dorsi, rectus abdominis, external obliques and internal obliques. Each subject performed nine repetitions of each combination of independent variables. The data collected during these trials were used to develop marginal distributions of trunk muscle activity as well as a 10×10 correlation matrix that described how the muscles cooperated to produce these extension torques. These elements were then combined to generate multivariate distributions describing the coactivation of the trunk musculature. An analysis of these distributions revealed that increases in extension moment, extension velocity and sagittal flexion angle created increases in both the mean and the variance of the distributions of the muscular response, while increases in the rate of trunk extension acceleration decreased both the mean and variance of the distributions of activity across all muscles considered. Increases in trunk asymmetry created a decrease in mean of the ipsi–lateral erector spinae and an increase in the mean of all other muscles considered, but there was little change in the variance of these distributions as a function of asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号