首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thymidylate synthase (TS) is the target in colon cancer therapeutic protocols utilizing such drugs as 5-fluorouracil and raltitrexed. The effectiveness of these treatments is hampered by emerging drug resistance, usually related to increased levels of TS. Human TS (hTS) is unique among thymidylate synthases from all species examined as its loop 181-197 can assume two main conformations related by rotation of 180 degrees. In one conformation, "active", the catalytic Cys-195 is positioned in the active site; in the other conformation, "inactive", it is at the subunit interface. Also, in the active conformation, region 107-128 has one well-defined conformation while in the inactive conformation this region assumes multiple conformations and is disordered in crystals. The native protein exists in apparent equilibrium between the two conformational states, while the enzyme liganded with TS inhibitors assumes the active conformation. The native protein has been reported to bind to several mRNAs, including its own mRNA, but upon ligation, RNA binding activity is lost. Ligation of TS by inhibitors also stabilizes it to turnover. Since currently used TS-directed drugs stabilize the active conformation and slow down the enzyme degradation, it is postulated that inhibitors of hTS stabilizing the inactive conformation of hTS should cause a down-regulation in enzyme levels as well as inactivate the enzyme.  相似文献   

2.
Lovelace LL  Gibson LM  Lebioda L 《Biochemistry》2007,46(10):2823-2830
Thymidylate synthase (TS) is a target in the chemotherapy of colorectal cancer and some other neoplasms. It catalyzes the transfer of a methyl group from methylenetetrahydrofolate to dUMP to form dTMP. On the basis of structural considerations, we have introduced 1,3-propanediphosphonic acid (PDPA) as an allosteric inhibitor of human TS (hTS); it is proposed that PDPA acts by stabilizing an inactive conformer of loop 181-197. Kinetic studies showed that PDPA is a mixed (noncompetitive) inhibitor versus dUMP. In contrast, versus methylenetrahydrofolate at concentrations lower than 0.25 microM, PDPA is an uncompetitive inhibitor, while at PDPA concentrations higher than 1 microM the inhibiton is noncompetive, as expected. At the concentrations corresponding to uncompetitive inhibition, PDPA shows positive cooperativity with an antifolate inhibitor, ZD9331, which binds to the active conformer. PDPA binding leads to the formation of hTS tetramers, but not higher oligomers. These data are consistent with a model in which hTS exists preferably as an asymmetric dimer with one subunit in the active conformation of loop 181-197 and the other in the inactive conformation.  相似文献   

3.
Thymidylate synthase (TS) is a well-validated cancer target that undergoes conformational switching between active and inactive states. Two mutant human TS (hTS) proteins are predicted from crystal structures to be stabilized in an inactive conformation to differing extents, with M190K populating the inactive conformation to a greater extent than A191K. Studies of intrinsic fluorescence and circular dichroism revealed that the structures of the mutants differ from those of hTS. Inclusion of the substrate dUMP was without effect on M190K but induced structural changes in A191K that are unique, relative to hTS. The effect of strong stabilization in an inactive conformation on protein phosphorylation by casein kinase 2 (CK2) was investigated. M190K was highly phosphorylated by CK2 relative to an active-stabilized mutant, R163K hTS. dUMP had no detectable effect on phosphorylation of M190K; however, dUMP inhibited phosphorylation of hTS and R163K. Studies of temperature dependence of catalysis revealed that the E(act) and temperature optimum are higher for A191K than hTS. The potency of the active-site inhibitor, raltitrexed, was lower for A191K than hTS. The response of A191K to the allosteric inhibitor, propylene diphosphonate (PDPA) was concentration dependent. Mixed inhibition was observed at low concentrations; at higher concentrations, A191K exhibited nonhyperbolic behavior with respect to dUMP and inhibition of catalysis was reversed by substrate saturation. In summary, inactive-stabilized mutants differ from hTS in thermal stability and response to substrates and PDPA. Importantly, phosphorylation of hTS by CK2 is selective for the inactive conformation, providing the first indication of physiological relevance for conformational switching.  相似文献   

4.
Expression of hTS (human thymidylate synthase), a key enzyme in thymidine biosynthesis, is regulated on the translational level through a feedback mechanism that is rarely found in eukaryotes. At low substrate concentrations, the ligand-free enzyme binds to its own mRNA and stabilizes a hairpin structure that sequesters the start codon. When in complex with dUMP (2′-deoxyuridine-5′-monophosphate) and a THF (tetrahydrofolate) cofactor, the enzyme adopts a conformation that is unable to bind and repress expression of mRNA. Here, we have used a combination of X-ray crystallography, RNA mutagenesis and site-specific cross-linking studies to investigate the molecular recognition of TS mRNA by the hTS enzyme. The interacting mRNA region was narrowed to the start codon and immediately flanking sequences. In the hTS enzyme, a helix–loop–helix domain on the protein surface was identified as the putative RNA-binding site.  相似文献   

5.
Salo-Ahen OM  Wade RC 《Proteins》2011,79(10):2886-2899
Human thymidylate synthase (hTS) is an established anticancer target. It catalyses the production of 2'-deoxythymidine-5'-monophosphate, an essential building block for DNA synthesis. Because of the development of cellular drug resistance against current hTS inhibitors, alternative inhibition strategies are needed. hTS exists in two forms, active and inactive, defined by the conformation of the active-site (AS) loop, which carries the catalytic cysteine, C195. To investigate the mechanism of activation and inactivation, targeted molecular dynamics (TMD) simulations of the transitions between active and inactive states of hTS were performed. Analysis of changes in the dihedral angles in the AS loop during different TMD simulations revealed complex conformational transitions. Despite hTS being a homodimeric enzyme and the conformational transition significantly involving the dimer interface, the transition occurs in an asymmetric, sequential manner via an ensemble of pathways. In addition to C195, which reoriented during the simulations, other key residues in the rotation of the AS loop included W182 and R185. The interactions of the cognate bulky W182 residues at the dimer interface hindered the simultaneous twist of the AS loops in the hTS dimer. Interactions of R185, which is unique for hTS, with ligands at different allosteric sites affected the activation transition. In addition to providing insights into the activation/inactivation mechanism of hTS and how conformational transitions can occur in homodimeric proteins, our observations suggest that blocking of AS loop rotation by ligands binding in the large cavity between the loops could be one way to stabilize inactive hTS and inhibit the enzyme.  相似文献   

6.
Crystal structures of human thymidylate synthase (hTS) revealed that the protein exists in active and inactive conformations, defined by the position of a loop containing the active site nucleophile. TS is highly homologous among diverse species; however, the residue at position 163 (hTS) differs among species. Arginine at this position is predicted by structural modeling to enable conformational switching. Arginine or lysine is reported at this position in all mammals in the GenBank and Ensembl databases, with arginine reported in only primates. Sequence analysis of the TS gene of representative primates revealed that arginine occurs at this relative position in all primates except a representative of prosimians. Mutant human proteins were created with residues at position 163 that occur in TSs from prokaryotes and eukaryotes. Catalytic constants (k cat) of mutant enzymes were 45–149% of hTS, with the lysine mutant (R163K) exhibiting the highest k cat. The effect of lysine substitution on solution structure and on ligand binding was investigated. R163K exhibited higher intrinsic fluorescence, a more negative molar ellipticity, and higher dissociation constants (K d) for ligands that modulate protein conformation than hTS. Temperature effects on intrinsic fluorescence and catalytic activity of hTS and R163K are consistent with proteins populating different conformational states. The data indicate that the enzyme with arginine at the position corresponding to 163 (hTS) evolved after the divergence of prosimians and simians and that substitution of lysine by arginine confers unique structural and functional properties to the enzyme expressed in simian primates.  相似文献   

7.
The enzyme thymidylate synthase (TS) catalyzes the reductive methylation of 2'-deoxyuridine 5'-monophosphate (dUMP) to 2'-deoxythymidine 5'-monophosphate. Using kinetic and X-ray crystallography experiments, we have examined the role of the highly conserved Tyr-261 in the catalytic mechanism of TS. While Tyr-261 is distant from the site of methyl transfer, mutants at this position show a marked decrease in enzymatic activity. Given that Tyr-261 forms a hydrogen bond with the dUMP 3'-O, we hypothesized that this interaction would be important for substrate binding, orientation, and specificity. Our results, surprisingly, show that Tyr-261 contributes little to these features of the mechanism of TS. However, the residue is part of the structural core of closed ternary complexes of TS, and conservation of the size and shape of the Tyr side chain is essential for maintaining wild-type values of kcat/Km. Moderate increases in Km values for both the substrate and cofactor upon mutation of Tyr-261 arise mainly from destabilization of the active conformation of a loop containing a dUMP-binding arginine. Besides binding dUMP, this loop has a key role in stabilizing the closed conformation of the enzyme and in shielding the active site from the bulk solvent during catalysis. Changes to atomic vibrations in crystals of a ternary complex of Escherichia coli Tyr261Trp are associated with a greater than 2000-fold drop in kcat/Km. These results underline the important contribution of dynamics to catalysis in TS.  相似文献   

8.
Gibson LM  Lovelace LL  Lebioda L 《Biochemistry》2008,47(16):4636-4643
Loop 181-197 of human thymidylate synthase (hTS) populates two conformational states. In the first state, Cys195, a residue crucial for catalytic activity, is in the active site (active conformer); in the other conformation, it is about 10 A away, outside the active site (inactive conformer). We have designed and expressed an hTS variant, R163K, in which the inactive conformation is destabilized. The activity of this mutant is 33% higher than that of wt hTS, suggesting that at least one-third of hTS populates the inactive conformer. Crystal structures of R163K in two different crystal forms, with six and two subunits per asymmetric part of the unit cells, have been determined. All subunits of this mutant are in the active conformation while wt hTS crystallizes as the inactive conformer in similar mother liquors. The structures show differences in the environment of catalytic Cys195, which correlate with Cys195 thiol reactivity, as judged by its oxidation state. Calculations show that the molecular electrostatic potential at Cys195 differs between the subunits of the dimer. One of the dimers is asymmetric with a phosphate ion bound in only one of the subunits. In the absence of the phosphate ion, that is in the inhibitor-free enzyme, the tip of loop 47-53 is about 11 A away from the active site.  相似文献   

9.
Loop 181–197 of human thymidylate synthase (hTS) populates two major conformations, essentially corresponding to the loop flipped by 180°. In one of the conformations, the catalytic Cys195 residue lies distant from the active site making the enzyme inactive. Ligands stabilizing this inactive conformation may function as allosteric inhibitors. To facilitate the search for such inhibitors, we have expressed and characterized several mutants designed to shift the equilibrium toward the inactive conformer. In most cases, the catalytic efficiency of the mutants was only somewhat impaired with values of kcat/Km reduced by factors in a 2–12 range. One of the mutants, M190K, is however unique in having the value of kcat/Km smaller by a factor of ~7500 than the wild type. The crystal structure of this mutant is similar to that of the wt hTS with loop 181–197 in the inactive conformation. However, the direct vicinity of the mutation, residues 188–194 of this loop, assumes a different conformation with the positions of Cα shifted up to 7.2 Å. This affects region 116–128, which became ordered in M190K while it is disordered in wt. The conformation of 116–128 is however different than that observed in hTS in the active conformation. The side chain of Lys190 does not form contacts and is in solvent region. The very low activity of M190K as compared to another mutant with a charged residue in this position, M190E, suggests that the protein is trapped in an inactive state that does not equilibrate easily with the active conformer.  相似文献   

10.
Thymidylate synthase (EC 2.1.1.45) (TS) catalyzes the conversion of dUMP to dTMP and is therefore indispensable for DNA replication in actively dividing cells. The enzyme is a critical target at which chemotherapeutic agents such as fluoropyrimidines (e.g., 5-fluorouracil and 5-fluoro-2'-deoxyuridine) and folic acid analogues (e.g., raltitrexed, LY231514, ZD9331, and BW1843U89) are directed. These agents exert their effects through the generation of metabolites that bind the active site of TS and inhibit catalytic activity. The binding of ligands to the TS molecule leads to dramatic changes in the conformation of the enzyme, particularly within the C-terminal domain. Stabilization of the enzyme and an increase in its intracellular level are associated with ligand binding and may be important in cellular response to TS-directed drugs. In the present study, we have examined molecular features of the TS molecule that control its degradation. We find that the C-terminal conformational shift is not required for ligand-mediated stabilization of the enzyme. In addition, we demonstrate that the N-terminus of the TS polypeptide, which is extended in the mammalian enzyme and is disordered in crystal structures, is a primary determinant of the enzyme's half-life. Finally, we show that TS turnover is carried out by the 26S proteasome in a ubiquitin-independent manner. These findings provide the basis for a mechanistic understanding of TS degradation and its regulation by antimetabolites.  相似文献   

11.
Based on crystal structures of bacterial thymidylate synthases (TS), a glutamine corresponding to residue 214 in human TS (hTS) is located in a region that is postulated to be critical for conformational changes that occur upon ligand binding. Previous steady-state kinetic studies indicated that replacement of glutamine at position 214 (Gln214) of hTS by other residues results in a decrease in nucleotide binding and catalysis, with only minor effects on folate binding (D. J. Steadman et al. (1998) Biochemistry 37, 7089-7095). The data suggested that Gln214 maintains the enzyme in a conformation that facilitates nucleotide binding. In the present study, transient-state kinetic analysis was utilized to determine rate constants that govern specific steps along the catalytic pathway of hTS, which provides the first detailed kinetic mechanism for hTS. Analysis of the reaction mechanisms of mutant TSs revealed that substitution at position 214 significantly affects nucleotide binding and the rate of chemical conversion of bound substrates to products, which is consistent with the results of steady-state kinetic analysis. Furthermore, it is shown that substitution at position 214 affects the rate of isomerization, presumably from an open to a closed form of the enzyme-substrate complex. Although the affinity of the initial binding of CH2H4folate is not substantially affected, Kiso, the ratio of the forward rate of isomerization (kiso) to the reverse rate of isomerization (kr, iso), is 2-6-fold lower for the mutants at position 214 compared to Q214, with the greatest effects on kiso. In addition, the binding of the folate analogue, CB3717, to dUMP binary complexes of mutant enzymes was characterized by a slow isomerization phase that was not detected in binding studies utilizing wild-type hTS. The data are consistent with the hypothesis that Gln214 is located at a structurally critical region of the enzyme.  相似文献   

12.
Regulation by phosphorylation is a well-established mechanism for controlling biological activity of proteins. Recently, phosphorylation of serine 124 in human thymidylate synthase (hTS) has been shown to lower the catalytic activity of the enzyme. To clarify a possible mechanism of the observed influence, molecular dynamics (MD), essential dynamics (ED) and MM-GBSA studies were undertaken. Structures derived from the MD trajectories reveal incorrect binding alignment between the pyrimidine ring of the substrate, dUMP, and the pterine ring of the cofactor analogue, THF, in the active site of the phosphorylated enzyme. The ED analysis indicates changes in the behavior of collective motions in the phosphorylated enzyme, suggesting that the formation of the closed ternary complex is hindered. Computed free energies, in agreement with structural analysis, predict that the binding of dUMP and THF to hTS is favored in the native compared to phosphorylated state of the enzyme. The paper describes at the structural level how phosphorylation at the distant site influences the ligand binding. We propose that the ‘phosphorylation effect’ is transmitted from the outside loop of Ser 124 into the active site via a subtle mechanism initiated by the long-range electrostatic repulsion between the phosphate groups of dUMP and Ser124. The mechanism can be described in terms of the interplay between the two groups of amino acids: the link (residues 125–134) and the patch (residues 189–192), resulting in the change of orientation of the pyrimidine ring of dUMP, which, in turn, prevents the correct alignment between the latter ring and the pterin ring of THF.  相似文献   

13.
The crystal structures of a deletion mutant of human thymidylate synthase (TS) and its ternary complex with dUMP and Tomudex have been determined at 2.0 A and 2.5 A resolution, respectively. The mutant TS, which lacks 23 residues near the amino terminus, is as active as the wild-type enzyme. The ternary complex is observed in the open conformation, similar to that of the free enzyme and to that of the ternary complex of rat TS with the same ligands. This is in contrast to Escherichia coli TS, where the ternary complex with Tomudex and dUMP is observed in the closed conformation. While the ligands interact with each other in identical fashion regardless of the enzyme conformation, they are displaced by about 1.0 A away from the catalytic cysteine in the open conformation. As a result, the covalent bond between the catalytic cysteine sulfhydryl and the base of dUMP, which is the first step in the reaction mechanism of TS and is observed in all ternary complexes of the E. coli enzyme, is not formed. This displacement results from differences in the interactions between Tomudex and the protein that are caused by differences in the environment of the glutamyl tail of the Tomudex molecule. Despite the absence of the closed conformation, Tomudex inhibits human TS ten-fold more strongly than E. coli TS. These results suggest that formation of a covalent bond between the catalytic cysteine and the substrate dUMP is not required for effective inhibition of human TS by cofactor analogs and could have implications for drug design by eliminating this as a condition for lead compounds.  相似文献   

14.
In order to investigate the interaction between hTS protein and its cognate mRNA, a 29nt fragment of TS mRNA was synthesized. This region has been suggested as a putative stem-loop involved in translational autoregulation. The melting temperature of the 29ntRNA was 65 degrees C, suggesting that this region does indeed form a stem-loop. Fluorescence spectroscopy was used to monitor the RNA: hTS protein interaction [dissociation constant (K(d)) 3.9 +/- 0.8 nM; stoichiometry of binding 1dimeric hTS: 1RNA]. When hTS was titrated against FdUMP, this gave the expected stoichiometry of 1dimeric hTS: 1.7 FdUMP but in the presence of the 29ntRNA, the stoichiometry of binding changed to 1dimeric hTS: 1RNA: 1FdUMP. Experiments using methotrexate (MTX) gave a stoichiometry of 1dimeric hTS: 1MTX and in the presence of 29ntRNA, the stoichiometry was unchanged. (19)F-NMR spectra of human TS: FdUMP complexes were found to be strikingly similar to analogous NMR spectra of complexes formed by L.casei TS and mouse TS. In the presence of FdUMP, spectra exhibited two additional resonances (-1.50 ppm and -34.4 ppm). The resonance at -1.50 ppm represents non-covalently bound FdUMP, the peak at -34.4 ppm represents covalently bound FdUMP. The addition of methotrexate to the binary TS-FdUMP complex caused a displacement of the internal equilibrium, with only the covalently-bound form seen, and with a slightly disturbed (19)F chemical shift (-36.5 ppm). Similar results were found when MTX was replaced by folinic or folic acid. The addition of 29ntRNA caused no changes to the (19)F spectra of either the binary or ternary complexes.  相似文献   

15.
Fritz TA  Liu L  Finer-Moore JS  Stroud RM 《Biochemistry》2002,41(22):7021-7029
Mutant forms of thymidylate synthase (TS) with substitutions at the conserved active site residue, Trp 80, are deficient in the hydride transfer step of the TS reaction. These mutants produce a beta-mercaptoethanol (beta-ME) adduct of the 2'-deoxyuridine-5'-monophosphate (dUMP) exocyclic methylene intermediate. Trp 80 has been proposed to assist hydride transfer by stabilizing a 5,6,7,8-tetrahydrofolate (THF) radical cation intermediate [Barrett, J. E., Lucero, C. M., and Schultz, P. G. (1999) J. Am. Chem. Soc. 121, 7965-7966.] formed after THF changes its binding from the cofactor pocket to a putative alternate site. To understand the molecular basis of hydride transfer deficiency in a mutant in which Trp 80 was changed to Gly, we determined the X-ray structures of this mutant Escherichia coli TS complexed with dUMP and the folate analogue 10-propargyl-5,8-dideazafolate (CB3717) and of the wild-type enzyme complexed with dUMP and THF. The mutant enzyme has a cavity in the active site continuous with bulk solvent. This cavity, sealed from bulk solvent in wild-type TS by Leu 143, would allow nucleophilic attack of beta-ME on the dUMP C5 exocyclic methylene. The structure of the wild-type enzyme/dUMP/THF complex shows that THF is bound in the cofactor binding pocket and is well positioned to transfer hydride to the dUMP exocyclic methylene. Together, these results suggest that THF does not reorient during hydride transfer and indicate that the role of Trp 80 may be to orient Leu 143 to shield the active site from bulk solvent and to optimally position the cofactor for hydride transfer.  相似文献   

16.
Trypsin-like serine proteases play essential roles in diverse physiological processes such as hemostasis, apoptosis, signal transduction, reproduction, immune response, matrix remodeling, development, and differentiation. All of these proteases share an intriguing activation mechanism that involves the transition of an unfolded domain (activation domain) of the zymogen to a folded one in the active enzyme. During this conformational change, activation domain segments move around highly conserved glycine hinges. In the present study, hinge glycines were replaced by alanine residues via site directed mutagenesis. The effects of these mutations on the interconversion of the zymogen-like and active conformations as well as on catalytic activity were studied. Mutant trypsins showed zymogen-like structures to varying extents characterized by increased flexibility of some activation domain segments, a more accessible N-terminus and a deformed substrate binding site. Our results suggest that the trypsinogen to trypsin transition is hindered by the mutations, which results in a shift of the equilibrium between the inactive zymogen-like and active enzyme conformations toward the inactive state. Our data also showed, however, that the inactive conformations of the various mutants differ from each other. Binding of substrate analogues shifted the conformational equilibrium toward the active enzyme since inhibited forms of the trypsin mutants showed similar structural features as the wild-type enzyme. The catalytic activity of the mutants correlated with the proper conformation of the active site, which could be supported by varying conformations of the N-terminus and the autolysis loop. Transient kinetic measurements confirmed the existence of an inactive to active conformational transition occurring prior to substrate binding.  相似文献   

17.
A Kamb  J S Finer-Moore  R M Stroud 《Biochemistry》1992,31(51):12876-12884
We have solved crystal structures of two complexes with Escherichia coli thymidylate synthase (TS) bound either to the cofactor analog N10-propargyl-5,8-dideazafolate (CB3717) or to a tighter binding polygutamyl derivative of CB3717. These structures suggest that cofactor binding alone is sufficient to induce the conformational change in TS; dUMP binding is not required. Because polyglutamyl folates are the primary cofactor form in vivo, and because they can bind more tightly than dUMP to TS, these structures may represent a key intermediate along the TS reaction pathway. These structures further suggest that the dUMP binding site is accessible in the TS-cofactor analog binary complexes. Conformational flexibility of the binary complex may permit dUMP to enter the active site of TS while the cofactor is bound. Alternatively, dUMP may enter the active site from the opposite side that the cofactor appears to enter; that is, through a portal flanked by arginines that also coordinate the phosphate group in the active site. Entry of dUMP through this portal may allow dUMP to bind to a TS-cofactor binary complex in which the complex has completed its conformational transition to the catalytically competent structure.  相似文献   

18.
Varicella zoster virus (VZV) is a highly infectious human herpesvirus that is the causative agent for chicken pox and shingles. VZV encodes a functional thymidylate synthase (TS), which is the sole enzyme that produces dTMP from dUMP de novo. To study substrate binding, the complex structure of TSVZV with dUMP was determined to a resolution of 2.9 Å. In the absence of a folate co-substrate, dUMP binds in the conserved TS active site and is coordinated similarly as in the human encoded TS (TSHS) in an open conformation. The interactions between TSVZV with dUMP and a cofactor analog, raltitrexed, were also studied using differential scanning fluorimetry (DSF), suggesting that TSVZV binds dUMP and raltitrexed in a sequential binding mode like other TS. The DSF also revealed interactions between TSVZV and in vitro phosphorylated brivudine (BVDUP), a highly potent anti-herpesvirus drug against VZV infections. The binding of BVDUP to TSVZV was further confirmed by the complex structure of TSVZV and BVDUP solved at a resolution of 2.9 Å. BVDUP binds similarly as dUMP in the TSHS but it induces a closed conformation of the active site. The structure supports that the 5-bromovinyl substituent on BVDUP is likely to inhibit TSVZV by preventing the transfer of a methylene group from its cofactor and the subsequent formation of dTMP. The interactions between TSVZV and BVDUP are consistent with that TSVZV is indeed a target of brivudine in vivo. The work also provided the structural basis for rational design of more specific TSVZV inhibitors.  相似文献   

19.
The thymidylate synthase (TS) activity in Leishmania major resides on the bifunctional protein thymidylate synthase-dihydrofolate reductase (TS-DHFR). We have isolated, either by Sephadex G-25 chromatography or by nitrocellulose filter binding, a binary complex between the substrate deoxyuridylate (dUMP) and TS from L. major. The kinetics of binding support a "slow binding" mechanism in which dUMP initially binds to TS in a rapid, reversible pre-equilibrium step (Kd approximately 1 microM), followed by a slow first-order step (k = 3.5 X 10(-3) s-1) which results in the isolable complex; the rate constant for the dissociation of dUMP from this complex was 2.3 X 10(-4) s-1, and the overall dissociation constant was approximately 0.1 microM. The stoichiometry of dUMP to enzyme appears to be 1 mol of nucleotide bound/mol of dimeric TS-DHFR. Binary complexes between the stoichiometric inhibitor 5-fluorodeoxyuridylate (FdUMP) and TS, and between the product deoxythymidylate (dTMP) and TS were also isolated by nitrocellulose filter binding. Competition experiments indicated that each of these nucleotides were binding to the same site on the enzyme and that this site was the same as that occupied by the nucleotide in the FdUMP-cofactor X TS ternary complex. Thus, it appeared that the binary complexes were occupying the active site of TS. However, the preformed isolable dUMP X TS complex is neither on the catalytic path to dTMP nor did it inhibit TS activity, even though the dissociation of dUMP from this complex is several orders of magnitude slower than catalytic turnover (approximately 3 s-1). The results suggest that dUMP binds to one of the two subunits of the native protein in a catalytically incompetent form which does not inhibit activity of the other subunit.  相似文献   

20.
TS (thymidylate synthase) is a key enzyme in the de novo biosynthesis of dTMP, and is indispensable for DNA replication. Previous studies have shown that intracellular degradation of the human enzyme [hTS (human thymidylate synthase)] is mediated by the 26S proteasome, and occurs in a ubiquitin-independent manner. Degradation of hTS is governed by a degron that is located at the polypeptide''s N-terminus that is capable of promoting the destabilization of heterologous proteins to which it is attached. The hTS degron is bipartite, consisting of two subdomains: an IDR (intrinsically disordered region) that is highly divergent among mammalian species, followed by a conserved amphipathic α-helix (designated hA). In the present report, we have characterized the structure and function of the hTS degron in more detail. We have conducted a bioinformatic analysis of interspecies sequence variation exhibited by the IDR, and find that its hypervariability is not due to diversifying (or positive) selection; rather, it has been subjected to purifying (or negative) selection, although the intensity of such selection is relaxed or weakened compared with that exerted on the rest of the molecule. In addition, we have verified that both subdomains of the hTS degron are required for full activity. Furthermore, their co-operation does not necessitate that they are juxtaposed, but is maintained when they are physically separated. Finally, we have identified a ‘cryptic’ degron at the C-terminus of hTS, which is activated by the N-terminal degron and appears to function only under certain circumstances; its role in TS metabolism is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号