首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bispecific antisera were prepared to a mixture of thylakoid membrane polypeptides 4.1 and 4.2. The identity of these polypeptides as the alpha and beta subunits of coupling factor (CF1) was established based on the cross-reactivity of the antisera toward CF1 from peas and by an analysis of the thm-24 mutant of Chlamydomonas which lacks the CF1 ATPase. Photochemical labeling of thylakoid membranes with hydrophobic and hydrophilic fluorescent probes indicated that these polypeptides did not significantly penetrate the membrane bilayer. Immunoprecipitation of the translation products of thylakoid-bound and soluble ribosomes showed the thylakoids to be the major site of synthesis of the polypeptides. Immunoprecipitation of the products of translation of total cellular RNA in a reticulocyte lysate showed no evidence for substantially higher molecular weight precursors. Further analysis of the thylakoid-bound synthesis of alpha and beta revealed that some of the in vitro synthesized polypeptides had been incorporated into the CF0-CF1 complex based on their release from membranes with trypsin and copurification with the CF0-CF1 ATPase.  相似文献   

2.
One-dimensional maps of proteolytic fragments generated by digestion with Staphylococcus aureus protease in sodium dodecyl sulfate (SDS) were used to identify three polypeptides synthesized by isolated Zea mays chloroplasts. This technique does not depend upon proper incorporation of the newly synthesized polypeptides into a more complex structure for their identification. The only preliminary purification required is electrophoretic separation on SDS-polyacrylamide gels. The pattern of radioactive fragments from labeled proteins which co-migrate with the alpha and beta subunits of chloroplast coupling factor (CF1) corresponds precisely to the pattern of stainable fragments derived from subunits of the purified enzyme. A 34,500-dalton protein is the major membrane-associated product of protein synthesis by isolated maize chloroplasts. From the similarity in the fragments formed by digestion with S. aureus protease, it appears that this radioactive protein is probably a precursor of a 32,000-dalton protein which is a component of the thylakoid. The alpha and beta subunits of CF1 newly synthesized by isolated chloroplasts are not fully extractable by procedures which normally solubilize the enzyme from membranes. The 34,500-dalton protein is not processed to the 32,000-dalton form in any great amount by isolated chloroplasts. A 19,000-dalton fragment of the 32,000-dalton protein is protected from digestion when thylakoids are treated with proteases, while the newly synthesized 34,500-dalton protein is fully susceptible. The isolated chloroplast does not appear to be able to fully integrate these newly made proteins into the membrane structure.  相似文献   

3.
Stromal ribosomes and those bound to thylakoid membranes were prepared from intact spinach chloroplasts which were purified on Percoll gradients. The products of read-out translation of these ribosomes supplemented with an Escherichia coli extract were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Striking similarity was found between the polypeptides labeled in the read-out translation of the chloroplastic ribosomes and those synthesized in isolated chloroplasts. Among the polypeptides translated on thylakoid-bound ribosomes, apoprotein of chlorophyll-protein complex I, alpha and beta subunits of coupling factor 1, and 32,000-Da membrane polypeptide were identified from their mobility on the polyacrylamide gel. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and other several stromal proteins were translated exclusively from stromal ribosomes. However, when the translation was programmed in cell-free systems from either E. coli, wheat germ, or rabbit reticulocytes by RNAs isolated separately from stroma and thylakoids, no qualitative difference was found between the products from those RNAs. These results suggest that thylakoid-bound ribosomes are the main sites of synthesis of thylakoid proteins and stromal-free ribosomes are that of stromal proteins, and that thylakoids and stroma contain mRNAs for the stromal and the thylakoid proteins, respectively, in a form not functioning in the chloroplasts.  相似文献   

4.
The products of mitochondria-bound cytoplasmic polysomes in yeast   总被引:15,自引:0,他引:15  
Experiments were undertaken to examine the fate and composition of polypeptides synthesized on cytoplasmic polysomes associated with the outer mitochondrial membrane of Saccharomyces cerevisiae. Mitochondria with their associated cytoplasmic polysomes were isolated from growing yeast spheroplasts and placed in a polypeptide chain completion system together with [35S]methionine. Of the total products synthesized in the readout system, 80 to 85% remain associated with the mitochondria after sucrose gradient centrifugation. Most of the labeled products are resistant to papain digestion unless the membranes are disrupted by treatment with detergent or shaking with glass beads. When free cytoplasmic polysomes were translated in the presence of [35S]methionine and incubated with mitochondria, only about 20% of the labeled polypeptides remain associated with the mitochondria; furthermore, most of these products are equally sensitive to papain digestion in the presence or absence of detergent. These results support the view that the cytoplasmic polysomes associated with the outer mitochondrial membrane of yeast facilitate the segregation of newly synthesized proteins into the organelle. The proportion of the alpha, beta, and gamma subunits of the F1-ATPase was determined among the products synthesized by mitochondria-bound and free cytoplasmic polysomes. By double antibody precipitation and immunoreplicate electrophoresis, we find that the proportion of the subunits of F1-ATPase is much greater among the products of the mitochondria-bound polysomes than those synthesized on free polysomes.  相似文献   

5.
Oat (Avena sativa L.) groats were labeled with radioactive leucine and salt-soluble proteins were extracted and analyzed. Polyacrylamide gel electrophoresis followed by fluorography indicated two radioactive polypeptides with molecular weight 58 to 62 kilodaltons which were similar in size to unreduced globulin α-β dimers. The role of endoplasmic reticulum in the synthesis of these globulin polypeptides was investigated by in vivo and in vitro protein synthesis studies. Labeled tissue was fractionated by centrifugation and rough endoplasmic reticulum was isolated. Two polypeptides which had molecular weights of 58 to 62 kilodaltons and were immunoprecipitable with antiglobulin immunoglobulin G were found to be transiently associated with the endoplasmic reticulum. Rough endoplasmic reticulum, as well as membrane-bound polysomes, directed the in vitro synthesis of two polypeptides with molecular weight 58 to 62 kilodaltons corresponding in size to unreduced α-β dimers and could be immunoprecipitated with antiglobulin immunoglobulin G. The translation products of free polysomes did not show this. In pulse-labeling, globulin polypeptides with molecular weight 58 to 62 kilodaltons, as well as the α + β subunits, were labeled in protein bodies.

The data suggest that oat globulin polypeptides are synthesized as higher molecular weight precursors on ER-associated polysomes. These precursors are probably transported into protein bodies and cleaved into smaller α and β subunits.

  相似文献   

6.
The synthesis and assembly of chloroplast H+-ATPase complex were studied by analyzing the incorporation of [35S]methionine into the constituent subunits with isolated intact chloroplasts and with thylakoid membranes that had been prepared from the chloroplasts so that they would retain ribosomes. The complex was isolated from thylakoids after labeling and identified by immunoprecipitation with an antiserum specific to CF1. The mechanism for the assembly of the complex was demonstrated to be active in the isolated chloroplasts by the following observations: the plastid genome-regulated subunits (alpha, beta, epsilon, I, and III) were labeled by in organello translation and recovered with the complex, and three other subunits (gamma, delta, and II) were labeled when intact chloroplasts were incubated with translation products from polyadenylated RNA. The two largest subunits, alpha and beta, were translated on thylakoid-bound ribosomes when the thylakoid membranes were incubated with soluble factors from Escherichia coli. They were recovered with the H+-ATPase complex, suggesting that they are translated on the bound ribosomes in the chloroplast, and that the isolated membranes retain the ability to assemble a complete complex. Provided that these observations are the result of de novo assembly of the complex, the imported and processed nuclear-coded subunits are presumed to be pooled not in stroma but on the membrane.  相似文献   

7.
The in vitro movement of ribosomes over messenger RNA was studied in both the presence and the absence of protein synthesis. For this purpose, labeled polysomes were extracted from rel+ and rel? strains of Escherichia coli grown in the presence of radioactive uracil and incubated in a cell-free system containing tRNA, amino acids, soluble enzymes and a source of energy. The gradual conversion of the labeled polysomes into monosomes and ribosomal subunits was followed by subjecting the reaction mixture to sucrose gradient sedimentation after various incubation times and measuring the radioactivity present in the three relevant ribosomal fractions.It was found that when the conditions of incubation allow protein synthesis to occur, polysomes extracted from rel+ and rel? cells are converted mainly into free monosomes, which can be made to dissociate into subunits by high-sodium or low-magnesium ion concentrations. Under conditions in which protein synthesis cannot occur because a mutant aminoacyl-tRNA synthetase has been rendered inactive, polysome conversion still occurs, though to a reduced extent. When the products of such residual run-off are examined, however, a difference is manifest between polysomes extracted from rel+ and from rel? strains: whereas the polysomes from the rel? strain are still converted into free monosomes even in the absence of protein synthesis, the polysomes from the rel+ strain are now converted mainly into subunits. It can be inferred, therefore, that ribosomes from rel? bacteria, but not those from rel+ bacteria, continue movement over messenger RNA in the absence of protein synthesis.Studies of mixed extracts from rel? and rel+ bacteria have shown that the character of the run-off process does not depend on the source of tRNA and soluble enzymes; the proportions of monosomes and subunits among the run-off products formed in the absence of protein synthesis depend only on the source of the polysomes. It is suggested that the mutation of the rel gene alters the functional architecture of ribosomes.  相似文献   

8.
Previous studies have demonstrated an imbalance in placental levels of the human choriogonadotropin (hCG) alpha and beta subunits. Free alpha subunit was present in first trimester placentae, and the imbalance was accentuated as gestation approached parturition. Two sets of experiments were performed to assess the control on production levels of each subunit. Synthesis of the alpha and beta subunits was assessed by labeling the nascent chains of polysomes derived from first trimester placenta. The products of these reactions were immunoprecipitated with subunit-specific antisera and the labeled subunits were quantitated; the ratio of alpha to beta subunit synthesized was 1.7. To examine whether this imbalanced synthesis reflected differences in the amount of subunit mRNAs, or differing mRNA translational efficiencies, the ratio of the steady state levels of these mRNAs was also determined. Total first trimester placental RNA was hydrolyzed with alkali, 5'-end-labeled with 32P, and hybridized in DNA excess to cloned alpha and beta cDNAs. These experiments demonstrated the presence of twice as much hCG-alpha mRNA as hCG-beta mRNA. In term placenta, the amounts of excess alpha subunit are greater than at first trimester; the ratio of alpha to beta mRNAs in term RNA was about 12:1. Thus, the subunit mRNA levels are independently regulated and their imbalance accounts for differences in the quantities of alpha and beta subunits seen in placental tissue.  相似文献   

9.
Chloroplasts contain thylakoid-bound and free ribosomes and polysomes. Whether binding of polysomes plays an immediate role in the regulation of chloroplast protein synthesis is not yet clear. In the present work, variations of protein synthesis and of mRNA content were measured not in greening, but in fully differentiated chloroplasts during the cell cycle of synchronized cultures of Chlamydomonas reinhardii. At different times of the vegetative cell cycle, the RNA was extracted from free and thylakoid-bound chloroplast polysomes and the partition of mRNAs between stroma and thylakoids was measured for two proteins, i.e. the 32-kDa herbicide-binding membrane protein and the soluble large subunit of the ribulose-1,5-bisphosphate carboxylase. At the same time the rates of synthesis of these two proteins were also determined. At 2 h after the onset of light, the content of both mRNAs in chloroplasts had doubled and 75-90% of each of these mRNAs were found to be bound to the thylakoids. The rate of protein synthesis, however, increased 10-fold, but reached its maximum only after about 6 h in the light. The differences in the time courses, in the stimulation of the rate of protein synthesis, and in the mRNA-binding to thylakoids point to a translational regulation of protein synthesis. Furthermore, since a very high proportion of polysomes were bound to thylakoids, containing mRNA for both a membrane and a soluble protein, this light-induced binding of polysomes to thylakoids seems to be an essential, but not the only, prerequisite for protein synthesis in chloroplasts.  相似文献   

10.
The formation of polypeptides of the coupling factor CF1 was investigated in 70S ribosome-deficient rye leaves generated by growing the plants at a non-permissive elevated temperature of 32 degrees C, in order to analyse mechanisms coordinating subunit accumulation. Antibodies were raised in rabbits against total CF1 as well as against its five individual subunits purified from chloroplast thylakoids from rye leaves. Several immunological techniques applying these antibodies (immunoprecipitation, immunoblotting, antibody affinity chromatography) were unable to detect the presence of any of the CF1 subunits in heat-treated 70S ribosome-deficient leaves. After in vivo labeling with L-[35S]methionine and subsequent immunoprecipitation, however, radioactivity was found to be incorporated into the subunits gamma and delta, but not into alpha, beta and epsilon, in 70S ribosome-deficient leaves, demonstrating the cytoplasmic synthesis of CF1-gamma and CF1-delta. Chase experiments after in vivo labeling with L-[35S]methionine indicated that the unassembled subunits gamma and delta were rapidly and preferentially degraded, while they were stabilized when integrated into the complete CF1 complex in normal green leaves from permissive growth conditions. The apparent half-times of the unassembled subunits were 2 h for CF1-gamma and 4 h for CF1-delta in 32 degrees C-grown leaves. Several other, stromal, plastid proteins of cytoplasmic origin were stable in 32 degrees C-grown leaves during the period of chase. In etiolated leaves total CF1, including all subunits, appeared to be less stable than in green leaves grown under permissive temperature conditions in light. Rapid degradation of the excess of unassembled subunits is regarded as an important mechanism ensuring a constant stoichiometry and apparently synchronous development of CF1 subunits.  相似文献   

11.
B P Dwyer 《Biochemistry》1988,27(15):5586-5592
Evidence has been obtained demonstrating that the peptides GVKYIAE and AIKYIAE found in the potential amphipathic helices of the alpha and beta subunits, respectively, of acetylcholine receptor are not buried in the membrane. The peptide KYIAE was synthesized, and polyclonal antibodies were prepared against a conjugate of bovine serum albumin and synthetic peptide. An immunoadsorbent capable of binding and subsequently releasing peptides ending with the sequence-YIAE was produced by attaching these specific antibodies to agarose. Native acetylcholine receptor was labeled with pyridoxal phosphate and Na[3H]BH4. The labeled protein was stripped of phospholipid and digested with the protease from Staphylococcus aureus strain V8. The digest was submitted to immunoadsorption to isolate the labeled indigenous peptides. As a control, alpha and beta polypeptides prepared by gel filtration of a solution of acetylcholine receptor in detergent were stripped of detergent and labeled with pyridoxal phosphate and Na[3H]BH4 in the presence of 8 M urea. The labeled alpha and beta polypeptides were digested and submitted to immunoadsorption. The specific radioactivities of the indigenous peptides from the alpha and beta subunits labeled under native and denaturing conditions were nearly equal. In similar experiments using isethionyl (2', 4'-dinitrophenyl)-3-amino-propionimidate as the labeling agent, the indigenous peptides from native and denatured receptor were also labeled to the same extent. Since these peptides are labeled to the same extent whether or not the protein is denatured, they cannot be buried in the membrane.  相似文献   

12.
DNA-dependent RNA polymerase of thermoacidophilic archaebacteria   总被引:7,自引:0,他引:7  
Among 979 non-glycerol growers of the yeast Schizosaccharomyces pombe, 40 strains were found to be deficient in the mitochondrial ATPase activity. Three of them exhibited an alteration in either the alpha or beta subunits of the F1ATPase. The alpha subunit was not immunodetected in the A23/13 mutant. The beta subunit was not immuno-detected in the B59/1 mutant. The existence of these two mutants shows that the alpha and beta subunits can be present independently of each other in the inner mitochondrial membrane. The beta subunit of the mutant F25/28 had a slower electrophoretic mobility than that of the wild-type beta subunit. This phenotype indicates abnormal processing or specific modification of the beta subunit. All mutants showed reduced activities of the NADH-cytochrome c reductase and of the cytochrome oxidase and a decreased synthesis of cytochrome aa3 and cytochrome b. This pleiotropic phenotype appears to result from specific modifications in the mitochondrial protein synthesis. The mitochondrial synthesis of four polypeptides (three cytochrome oxidase and one cytochrome b subunits) was markedly decreased or absent while three new polypeptides (Mr = 54000, 20000 and 15000) were detected in all the mutants analysed. This observation suggests that a functional F1ATPase is necessary for the correct synthesis and/or assembly of the mitochondrially made components of the cytochrome oxidase and cytochrome b complexes.  相似文献   

13.
We have used an in vitro reconstitution system, consisting of cell-free translation products and intact chloroplasts, to investigate the pathway from synthesis to assembly of two polypeptide subunits of the light-harvesting chlorophyll-protein complex. These polypeptides, designated 15 and 16, are integral components of the thylakoid membranes, but they are products of cytoplasmic protein synthesis. Double immunodiffusion experiments reveal that the two polypeptides share common antigenic determinants and therefore are structurally related. Nevertheless, they are synthesized in vitro from distinct mRNAs to yield separate precursors, p15 and p16, each of which is 4,000 to 5,000 daltons larger than its mature form. In contrast to the hydrophobic mature polypeptides, the precursors are soluble in aqueous solutions. Along with other cytoplasmically synthesized precursors, p15 and p16 are imported into purified intact chloroplasts by a post- translational mechanism. The imported precursors are processed to the mature membrane polypeptides which are recovered exclusively in the thylakoids. The newly imported polypeptides are assembled correctly in the thylakoid lipid bilayer and they bind chlorophylls. Thus, these soluble membrane polypeptide precursors must move from the cytoplasm through the two chloroplast envelope membranes, the stroma, and finally insert into the thylakoid membranes, where they assemble with chlorophyll to form the light-harvesting chlorophyll protein complex.  相似文献   

14.
Cunningham KM  McCarty RE 《Biochemistry》2000,39(15):4391-4398
The catalytic portion of the chloroplast ATP synthase (CF(1)) consists of five different polypeptides in the stoichiometry alpha(3)beta(3)gammadeltaepsilon and is structurally asymmetric. Asymmetry is readily apparent in the properties of the six nucleotide binding sites and the single-copy, smaller subunits. Asymmetry is also detected in the alpha subunits by the rapid and covalent binding of Lucifer Yellow vinyl sulfone (LY) to one of the three chemically identical alpha subunits. The binding of LY to a single alpha subunit has allowed the investigation of whether asymmetry in the alpha subunits is a permanent feature of CF(1). The development of an electrochemical proton gradient across illuminated thylakoid membranes and the preincubation of CF(1) in solution with Mg(2+)-ATP were found to alter the LY distribution such that multiple alpha subunits were labeled with LY. Illumination of thylakoid membranes doubled the extent of LY labeling, and fluorescence resonance energy transfer measurements indicated that LY was bound to more than one alpha subunit. Since the change in LY distribution was inhibited by proton ionophores (uncouplers), alteration of alpha conformation by illumination is a result of the generation of a proton gradient. Preincubation of CF(1) in solution with Mg(2+)-ATP had no effect on the extent of LY labeling but resulted in multiple alpha subunits binding LY as determined by fluorescence resonance energy transfer measurements. Adenine nucleotides at substrate level concentrations inhibit the reaction of LY with the alpha subunits. No increase in LY labeling was observed when thylakoids were illuminated under conditions in which CF(1) was catalytically active.  相似文献   

15.
We have used cell-free translation and two-dimensional gel electrophoresis to examine the complexities of the polysomal and cytoplasmic nonpolysomal [ribonucleo-protein (free RNP)] messenger ribonucleic acid (mRNA) populations of sea urchin eggs and embryos. We show that all species of mRNA detected by this method are represented in both the polysomes and free RNPs; essentially all messages present in polysomes are also in the free RNP fraction. However, the cytoplasmic distribution is clearly nonrandom since some templates are relatively concentrated in the free RNPs and others are predominantly in the polysomes. The polypeptides synthesized under the direction of unfertilized egg mRNA are qualitatively indistinguishable from those made by using embryonic mRNA, indicating that the complexity of the abundant class mRNA remains unchanged from egg through early development. However large changes in the abundancies of specific mRNAs occur, and changes are detected in the polysomal/free RNP distribution of some mRNAs through development. The differences in the realtive abundancies of specific mRNAs between polysomes and free RNPs and the developmental changes that take place indicate significant cytoplasmic selection of mRNA for translation. Three different forms of actin (termed alpha, beta, and gamma) were identified among the translation products. Messages for all three are present in the unfertilized egg and early cleavage embryo, yet the gamma form is preferentially located in the polysomes and the alpha and beta in the free RNPs. The relative concentrations of the three change greatly during development as do their relative distributions into polysomes and free RNPs. Examinations of in vivo labeled proteins largely support the in vitro findings. The results indicate that the synthesis of actin mRNAs increases greatly during development and that the expression of the actin mRNAs is partly controlled at the translation level during early development.  相似文献   

16.
Based on evidence that 50% of herpes simplex 1 DNA is transcribed in HEp-2 cells in the absence of protein synthesis we examined the order and rates of synthesis of viral polypeptides in infected cells after reversal of cycloheximide- or puromycin-mediated inhibition of protein synthesis. These experiments showed that viral polypeptides formed three sequentially synthesized, coordinately regulated groups designated alpha, beta, and gamma. Specifically: (i) The alpha group, containing one minor structural and several nonstructural polypeptides, was synthesized at highest rates from 3 to 4 h postinfection in untreated cells and at diminishing rates thereafter. The beta group, also containing minor structural and nonstructural polypeptides, was synthesized at highest rates from 5 to 7 h and at decreasing rates thereafter. The gamma group containing major structural polypeptides was synthesized at increasing rates until at least 12 h postinfection. (ii) The synthesis of alpha polypeptides did not require prior infected cell protein synthesis. In contrast, the synthesis of beta polypeptides required both prior alpha polypeptide synthesis as well as new RNA synthesis, since the addition of actinomycin D immediately after removal of cycloheximide precluded beta polypeptide synthesis. The function supplied by the alpha polypeptides was stable since interruption of protein synthesis after alpha polypeptide synthesis began and before beta polypeptides were made did not prevent the immediate synthesis of beta polypeptides once the drug was withdrawn. The requirement of gamma polypeptide synthesis for prior synthesis of beta polypeptides seemed to be similar to that of beta polypeptides for prior synthesis of the alpha group. (iii) The rates of synthesis of alpha polypeptides were highest immediately after removal of cycloheximide and declined thereafter concomitant with the initiation of beta polypeptide synthesis; this decline in alpha polypeptide synthesis was less rapid in the presence of actinomycin D which prevented the appearance of beta and gamma polypeptides. The decrease in rates of synthesis of beta polypeptides normally occurring after 7 h postinfection was also less rapid in the presence of actinomycin D than in its absence, whereas ongoing synthesis of gamma polypeptides at this time was rapidly reduced by actinomycin D. (iv) Inhibitors of DNA synthesis (cytosine arabinoside or hydroxyurea) did not prevent the synthesis of alpha, beta, or gamma polypeptides, but did reduce the amounts of gamma polypeptides made.  相似文献   

17.
The integrin family is composed of a large number of heterodimers, each one mediating distinct interactions with extracellular matrix and/or cell surface ligands. The expression of integrins appears to be tightly regulated in vivo, but the mechanisms by which cells control the formation and surface expression of specific pairs of subunits have not been well characterized. Two integrin subunits, the alpha subunit alpha v, and the beta subunit beta 1, could pose special problems in regulation because of their capacity to associate with multiple partners. In the present study, we have examined the effects of the cytokine transforming growth factor beta 1 (TGF-beta 1) on the expression of alpha v- and beta 1-containing integrins in primary cultures of guinea pig airway epithelial cells, e.g. cells that we have previously found to express multiple potential partners for both alpha v and beta 1. TGF-beta 1 increased the surface expression of both alpha v- and beta 1-containing heterodimers after periods of stimulation from 24 to 72 h. These increases in surface expression were associated with significant increases in the concentrations of mRNA encoding each of the partners of alpha v and beta 1, but with only minimal increases in mRNA encoding alpha v and beta 1 themselves. Airway epithelial cells metabolically labeled with [35S]methionine during stimulation with TGF-beta 1 demonstrated only a minimal increase in the synthesis of new alpha v protein at a time when synthesis of alpha v's beta subunit partners and surface expression of alpha v-containing heterodimers were dramatically increased. These data suggest that, at least in some cells, promiscuous integrin subunits (both alpha and beta) may normally be synthesized in excess. Thus, the surface expression of specific integrin heterodimers can be regulated primarily through regulation of the synthesis of the specific partners of these subunits.  相似文献   

18.
Abstract: Messenger RNA (mRNA) was extracted from human postmortem brain tissue by alkaline phenol extraction of polysomes followed by oligo (dT)-cellulose chromatography. The mRNA preparations stimulated protein synthesis in a cell-free system containing wheat germ homogenate. The products of protein synthesis were analyzed by one- and two-dimensional gel electrophoresis. These analyses indicated that numerous polypeptides, including tubulin subunits and actin isomers, were synthesized by the human mRNA. The molecular weight range of polypeptides synthesized by human mRNA fractions from two brain specimens were identical, and analysis by two-dimensional gel electrophoresis indicated qualitatively similar products. The yield of mRNA extracted per gram of human tissue was less than the yield obtained with rat forebrains from animals sacrificed immediately before brain removal and mRNA purification. A decrease in the amount of polysomes isolated from human tissue relative to rat brain tissue was a major factor contributing to the low yield. The molecular weight distribution of polypeptides synthesized by human and rat brain mRNA fractions in wheat germ homogenate was similar; thus, there was no indication for selective breakdown or inactivation of high molecular weight mRNA species in the human tissue. Our studies indicate that it is possible to utilize postmortem tissue for molecular biological investigations of human brain mRNA.  相似文献   

19.
Developing nauplii (embryos) of the brine shrimp Artemia salina are an excellent model system for studying the biogenesis of the sodium- and potassium-activated adenosine triphosphatase (Na,K-ATPase). The nauplii exhibit a burst of Na,K-ATPase synthesis between 6 and 32 h of development (Peterson, G. L., Churchill, L., Fisher, J. A., and Hokin, L. E. (1982) J. Exp. Zool. 221, 295-308). We have now determined the sites of synthesis of the alpha and beta subunits of the Na,K-ATPase in developing A. salina nauplii. Membrane-bound and free polysomes were isolated from nauplii, and RNA was extracted from the polysomes. The polysomal RNA was translated in vitro in a rabbit reticulocyte lysate, and the translation products were immunoprecipitated by anti-subunit antisera. The immunoprecipitated proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualized by fluorography. Our data show that the alpha subunit precursor is synthesized on membrane-bound polysomes and the beta subunit precursor is synthesized on free polysomes. In addition, the alpha subunit precursor appears as two separate peptides on sodium dodecyl sulfate-polyacrylamide gels, which suggests that the two alpha subunit forms seen in mature brine shrimp Na,K-ATPase are products of two distinct messenger RNAs. The beta subunit precursor appears as a single discrete band, unlike the mature beta subunit, which appears as a diffuse band.  相似文献   

20.
Glycoprotein mRNA (G mRNA) of vesicular stomatitis virus is synthesized in the cytosol fraction of infected HeLa cells. Shortly after synthesis, this mRNA associates with 40S ribosomal subunits and subsequently forms 80S monosomes in the cytosol fraction. The bulk of labeled G mRNA is then found in polysomes associated with the membrane, without first appearing in the subunit or monomer pool of the membrane-bound fraction. Inhibition of the initiation of protein synthesis by pactamycin or muconomycin A blocks entry of newly synthesized G m RNA into membrane-bound polysomes. Under these circumstances, labeled G mRNA accumulates into the cytosol. Inhibition of the elongation of protein synthesis by cucloheximide, however, allows entry of 60 percent of newly synthesized G mRNA into membrane-bound polysomes. Furthermore, prelabeled G mRNA associated with membrane-bound polysomes is released from the membrane fraction in vivo by pactamycin or mucomycon A and in vitro by 1mM puromycin - 0.5 M KCI. This release is not due to nonspecific effects of the drugs. These results demonstrate that association of G mRNA with membrane-bound polysomes is dependent upon polysome formation and initiation of protein synthesis. Therefore, direct association of the 3' end of G mRNA with the membrane does not appear to be the initial event in the formation of membrane-bound polysomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号