共查询到20条相似文献,搜索用时 8 毫秒
1.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol. 相似文献
2.
Moseley L Jentjens RL Waring RH Harris RM Harding LK Jeukendrup AE 《American journal of physiology. Endocrinology and metabolism》2005,289(2):E206-E211
The purpose of this study was to assess the level of agreement between two techniques commonly used to measure exogenous carbohydrate oxidation (CHO(EXO)). To accomplish this, seven healthy male subjects (24 +/- 3 yr, 74.8 +/- 2.1 kg, V(O2(max)) 62 +/- 4 ml x kg(-1) x min(-1)) exercised at 50% of their peak power for 120 min on two occasions. During these exercise bouts, subjects ingested a solution containing either 144 g glucose (8.7% wt/vol glucose) or water. The glucose solution contained trace amounts of both [U-13C]glucose and [U-14C]glucose to allow CHO(EXO) to be quantified simultaneously. The water trial was used to correct for background 13C enrichment. 13C appearance in the expired air was measured using isotope ratio mass spectrometry, whereas 14C appearance was quantified by trapping expired CO(2) in solution (using hyamine hydroxide) and adding a scintillator before counting radioactivity. CHO(EXO) measured with [13C]glucose ([13C]CHO(EXO)) was significantly greater than CHO(EXO) measured with [14C]glucose ([14C]CHO(EXO)) from 30 to 120 min. There was a 15 +/- 4% difference between [13C]CHO(EXO) and [14C]CHO(EXO) such that the absolute difference increased with the magnitude of CHO(EXO). Further investigations suggest that the difference is not because of losses of CO2 from the trapping solution before counting or an underestimation of the "strength" of the trapping solution. Previous research suggests that the degree of isotopic fractionation is small (S. C. Kalhan, S. M. Savin, and P. A. Adam. J Lab Clin Med89: 285-294, 1977). Therefore, the explanation for the discrepancy in calculated CHO(EXO) remains to be fully understood. 相似文献
3.
4.
The experiment was performed on rats to which a single injection of [U-14C]glucose had been administered. Results were observed from the 7th to the 281st day following contamination. At 280 days only the lipids in the brain contained radioactivity, the highest degree of specific activity being found in the cerebrosides. 相似文献
5.
In brain perfusion experiments conducted with blood containing [U-14C]glucose the relative specific activity (RSA) of blood glucose carbon incorporated in brain intermediate metabolites was measured. It was demonstrated that the so-called metabolic pattern of Geiger is not constant, but it bears a close relation to the function of the brain. The results of the study may be summarized briefly as follows. (1) In a group (A) of cats with a high level of brain function, the RSA of lactic acid was 75 per cent; that of glutamic acid 80 per cent; aspartic acid 75 per cent; glutamine 61 per cent; GABA 43 per cent; and respiratory CO2 55 per cent. It was observed that the major part of the carbon of amino acids, such as glutamic acid and aspartic acid, which are directly associated with the tricarboxylic acid cycle are derived from blood glucose. (2) In a group (B) showing a low level of brain function, the RSA of each amino acid was considerably lowered. The RSA of glutamic acid and aspartic acid was about 50 per cent and that of respiratory CO2 was 27 per cent. (3) In a group (C) with a still lower level of brain function, each amino acid as well as the respiratory CO2 had still lower RSA values. (4) The metabolic pattern of Geiger corresponds to values obtained during low functional activity of the brain in our experiment. 相似文献
6.
7.
《The International journal of biochemistry》1980,11(4):655-657
- 1.1. After injection of a mixture of [G-3H]glutamate and [U-14C]glucose to rats, the highest amount of 14C was found in an unidentified compound (glycopeptide?) of the acid soluble extract of the liver at 2 min.
- 2.2. With increasing time after the injection the specific radioactivity of [3H]glutamate decreased and that of [3H]glutamine increased in the liver.
- 3.3. The labelling of the liver protein with 14C was due to [14C]glutamate and [14C]aspartate, and that with 3H was exclusively due to [3H]glutamate.
8.
9.
[14C]acetylcholine synthesis and [14C]carbon dioxide production from [U-14C]glucose by tissue prisms from human neocortex. 总被引:3,自引:0,他引:3 下载免费PDF全文
1. [14C]Acetylcholine synthesis and 14CO2 production from [U-14C]glucose has been measured in tissue prism preparations from human neocortex. 2. Electron micrographs of prisms from human and rat neocortex show that both contain intact synaptic endings with evenly-distributed vesicles and normal-appearing mitochondria, but only poorly preserved cell body structure. 3. Synthesis of [14C]acetylcholine in prisms from rat neocortex is similar to estimates for turnover in vivo. Synthesis in prisms from human neocortex is 18% of that in rat tissue and 64% of that in tissue from baboon neocortex for incubations performed in 31 mM-K+. 4. Investigations of prisms prepared from rat brains stored at 37 degrees C after death revealed that synthesis of [14C]acetylcholine in the presence of 31 mM-K+ was greatly decreased within 30 min of post-mortem incubation, whereas synthesis at 5 mM-K+ and production of 14CO2 at both K+ concentrations were only significantly affected after longer periods. Changes were similar in neocortex and striatum. Thus human autopsy material is unlikely to be suitable for use with this system. 5. Investigations using animal models suggest that [14C]acetylcholine synthesis and 14CO2 production are not affected by surgical or anaesthetic procedures. 6. Neither [14C]acetylcholine synthesis nor 14CO2 production in human prisms was significantly changed with age between 15 and 68 years. 7. Samples from patients with the dementing condition Alzheimer's disease showed a significant decrease in [14C]acetylcholine synthesis to 47% of normal samples and a significant increase of 39% in production of 14CO2. 相似文献
10.
The hormonal control of [14C]glucose synthesis from [U-14C-A1dihydroxyacetone was studied in hepatocytes from fed and starved rats. In cells from fed rats, glucagon lowered the concentration of substrate giving half-half-maximal rates of incorporation while it had little or no effect on the maximal rate. Inhibitors of gluconeogenesis from pyruvate had no effect on the ability of the hormone to stimulate the synthesis of [14C]glucose from dihydroxyacetone. The concentrations of glucagon and epinephrine giving half-maximal stimulation from dihydroxacetone were 0.3 to 0.4 mM and 0.3 to 0.5 muM, respectively. The meaximal catecholamine stimulation was much less than the maximal stimulation by glucagon and was mediated largely by the alpha receptor. Insulin had no effect on the basal rate of [14C]clucose synthesis but inhibited the effect of submaximal concentration of glucagon or of any concentration of catecholamine. Glucagon had no effect on the uptake of dihydroxyacetone but suppressed its conversion to lactate and pyruvate. This suppression accounted for most of the increase in glucose synthesis. In cells from gasted rats, where lactate production is greatly reduced and the rate of glucose synthesis is elevated, glucagon did not stimulate gluconeogenesis from dihydroxyacetone. Findings with glycerol as substrate were similar to those with dihyroxyacetone. Ethanol also stimulated glucose production from dihydroxyacetone while reducing proportionately the production of lactate. Ethanol is known to generate reducing equivalents fro clyceraldehyde-3-phosphate dehydrogenase and presumably thereby inhibits carbon flux to lactate at this site. Its effect was additive with that of glucagon. Estimates of the steady state levels of intermediary metabolites and flux rates suggested that glucagon activated conversion of fructose diphosphate to fructose 6-phosphate and suppressed conversion of phosphoenolpyruvate to pyruvate. More direct evidence for an inhibition of pyruvate kinase was the observation that brief exposure of cells to glucagon caused up to 70% inhibition of the enzyme activity in homogenates of these cells. The inhibition was not seen when the enzyme was assayed with 20 muM fructose diphosphate. The effect of glucagon to lower fructose diphosphate levels in intact cells may promote the inhibition of pyruvate kinase. The inhibition of pyruvate kinase may reduce recycling in the pathway of gluconeogenesis from major physiological substrates and probably accounts fromsome but not all the stimulatory effect of glucagon. 相似文献
11.
An enzymatic method using phenylalanine ammonia-lyase (l-phenylalanine ammonia-lyase, EC 4.3.1.5) for the rapid conversion of l-[U-14C]phenylalanine to the deaminated lignin precursor trans-[U-14C]cinnamic acid is described. The method produces an experimentally useful 14C-labelled deaminated lignin precursor unavailable from radiochemical supply companies. 相似文献
12.
13.
V V Snitinski? V G Ianovich S I Vovk 《Zhurnal evoliutsionno? biokhimii i fiziologii》1985,21(1):86-88
Studies have been made on the intensity of oxidation of [U-14C]-palmitate, [1-14C]- and [6-14C]-glucose by slices of the liver and skeletal muscles of new-born, 1-day, 5-day and adult Wistar rats and domestic pigs. It was found that the level of 14CO2 production from these substrates is higher in tissues of rats than in those of pigs. At early stages of ontogenesis, in tissues of both species intensive oxidation of glucose is observed together with oxidation of fatty acids. In the course of ontogenetic development, the intensity of glucose utilization significantly decreases, whereas the level of fatty acid catabolism remains relatively unaffected. 相似文献
14.
G A Dienel T Nelson N F Cruz T Jay A M Crane L Sokoloff 《The Journal of biological chemistry》1988,263(36):19697-19708
Significant dephosphorylation of glucose 6-phosphate due to glucose-6-phosphatase activity in rat brain in vivo was recently reported (Huang, M., and Veech, R.L. (1982) J. Biol. Chem. 257, 11358-11363). The evidence was an apparent more rapid 3H than 14C loss from the glucose pool and faster [2-3H]glucose than [U-14C]glucose utilization following pulse labeling of the brain with [2-3H,U-14C]glucose. Radiochemical purity of the glucose and quantitative recovery of the labeled products of glucose metabolism isolated from the brain were obviously essential requirements of their study, but no evidence for purity and recovery was provided. When we repeated these experiments with the described isolation procedures, we replicated the results, but found that: 1) the precursor glucose pool contained detritiated, 14C-labeled contaminants arising from glucose metabolism, particularly 2-pyrrolidone-5-carboxylic acid derived from [14C]glutamine; 2) [14C]glucose metabolite were not quantitatively recovered; 3) the procedure used to isolate the glucose itself produced detritiated, 14C-labeled derivatives of [2-3H,U-14C]glucose. These deficiencies in the isolation procedures could fully account for the observations that were interpreted as evidence of significant glucose 6-phosphate dephosphorylation by glucose-6-phosphatase activity. When glucose was isolated by more rigorous procedures and its purity verified in the present studies, no evidence for such activity in rat brain was found. 相似文献
15.
Aldegunde M Andrés MD Soengas JL 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2000,170(3):237-243
The influx of glucose into the brain and plasma glucose disappearance were estimated in rainbow trout (Oncorhynchus mykiss) intravenously injected (1 ml · kg−1 body weight) with a single dose (15 μCi · kg−1 body weight) of 3-O-methyl-D-[U-14C]glucose ([U-14C]-3-OMG) at different times (2–160 min), and after intravenous injection at 15 min of increased doses (10–60 μCi · kg−1 body weight) of [U-14C]-3-OMG. Brain and plasma radiotracer concentrations were measured, and several kinetic parameters were calculated. The apparent
brain glucose influx showed a maximum after 15–20 min of injection then decreased to a plateau after 80 min. Brain distribution
space of 3-OMG increased from 2 min to 20 min reaching equilibrium from that time onwards at a value of 0.14 ml · g−1. The unidirectional clearance of glucose from blood to brain (k1) and the fractional clearance of glucose from brain to blood (k2) were estimated to be 0.093 ml · min−1 · g−1, and 0.867 min−1, respectively. A linear increase was observed in brain and plasma radiotracer concentrations when increased doses of [U-14C]-3-OMG were used. All these findings support a facilitative transport of glucose through the blood-brain barrier of rainbow
trout with characteristics similar to those observed in mammals. The injection of different doses of melatonin (0.25–1.0 mg · kg−1) significantly increased brain glucose influx suggesting a possible role for melatonin in the regulation of glucose transport
into the brain.
Accepted: 26 January 2000 相似文献
16.
The anomeric specificity of D-[U-14C]glucose incorporation into glycogen in rat hemidiaphragms was investigated. For this purpose, the hemidiaphragms were preincubated for 30 min at 37 degrees C and then incubated for 5 min at the same temperature in the presence of alpha- or beta-D-[U-14C]glucose. The concentrations of D-glucose (5.6 or 8.8 mM) and insulin (0 or 10 mU/ml) were identical during the preincubation and incubation periods. The incubation medium was prepared in D2O/H2O (3:1, v/v) in order to delay the interconversion of the D-glucose anomers. In addition to glycogen labelling, the output of radioactive acidic metabolites was also measured. Insulin caused a preferential stimulation of glycogen labelling relative to glycolysis. Such was not the case in response to a rise in D-glucose concentration. At 5.6 mM D-glucose and whether in the presence or absence of insulin, both glycogen labelling and glycolysis were lower with alpha-D-glucose than with beta-D-glucose suggesting a higher rate of beta-D-glucose than alpha-D-glucose transport across the plasma membrane. A mirror image was found at 8.8 mM D-glucose, especially in the absence of insulin. At this close-to-physiological hexose concentration, insulin lowered the alpha/beta ratio for glycogen labelling. On the contrary, the rise in D-glucose concentration increased such a ratio. Since such a rise is probably little affected by any possible anomeric difference in D-glucose transport across the plasma membrane, the present results strongly suggest that the intracellular factors regulating net glycogen synthesis, as well as glycolytic flux, display obvious preference for alpha-D-glucose. 相似文献
17.
S Watanabe S Otsuki K Mitsunobu T Sannomiya N Okumura 《Journal of neurochemistry》1970,17(11):1571-1577
—In order to study changes of the glycolytic-respiratory system and amino acid metabolism associated with blood flow disturbance, the cat brain perfusion was conducted with artificial blood containing [U-14C]glucose and the results were compared with those of standard perfusion keeping the cerebral blood flow at constant rate. The findings of the present study are briefly summarized: (1) In blood flow disturbance there was observed an accumulation of lactate just as seen in the low functional state observable in the standard perfusion. However the increase in relative specific activity of lactate was not so marked as the rise in cerebral lactate content, and this indicates that there is an increase of lactate production from substrates other than glucose as well as an increase of net flow of glucose carbon to lactate. (2) In blood flow disturbance relative specific activities of glutamate, aspartate, glutamine and respiratory CO2 were decreased as compared with those in the brain of high functional state. The relative specific activity of GABA in the reduced blood flow brain was at the same level as that of the brain at high functional state and it was higher than the relative specific activity of glutamate. (3) The relative specific activity and content of alanine were increased in the low function brain with standard perfusion. 相似文献
18.
Abstract— The half-life of free [14C]palmitic acid injected intracerebrally into C57BL/10J mice was less than 5 min. The rapid disappearance of radioactivity as palmitic acid was accompanied by increases in the radioactivity of the phosphatidic acids and the diacyl-glycerols. The peak specific radioactivity of the diacylglycerols occurred at about 6-8 min after injection. The triacylglycerols, phosphatidyl ethanolamines and phosphatidyl cholines exhibited increasing amounts of radioactivity during the first 40 min. At 160 min after injection, the distribution of radioactivity was similar to the pattern observed at 12 h. The biosynthetic pathway through the phosphatidic acids and the diacylglycerols to triacylglycerols, phosphatidyl ethanolamines and phosphatidyl cholines is apparently the major pathway in vivo for the esterification of free fatty acids in the brain. 相似文献
19.
M Shimada T Kihara M Watanabe K Kurimoto 《The journal of histochemistry and cytochemistry》1976,24(4):591-1000
Tissue distribution of radioactive carbon from [U-14C]glucose in the mouse in vivo was studied by whole-body autoradiography. The mice were frozen with Dry-Ice-acetone at 0.5, 1, 5 and 30 min, 1 and 24 hr and 1 and 3 weeks after intraperitoneal injection of [U-14C]glucose. Whole-sagittal sections of the frozen mouse, obtained by using a microtome in a cryostat, were dried in a cryostat and autoradiographed. The resulting dry autoradiographs are called untreated autoradiographs in the present work. The sections were then fixed in cold 6% (w/v) HClO4, dried at room temperature and again autoradiographed. Autoradiographs that have undergone this process are referred to as treated autoradiographs. In both untreated and treated autoradiographs, within 1 min following injection of the labeled glucose, the abdominal cavity had the highest autoradiographic density. At 1 hr, density became highest in Harder's, sublingual and duodenal glands, large intestinal mucosa and tongue, and after 3 weeks, no autoradiographic denisty was present. 相似文献