首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The individual pretreatment of Sprague-Dawley rats with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2,2',4,4',5,5'-hexachlorobiphenyl (HCB) has been previously shown to result in the "induction" of [3H]TCDD specific binding activity in hepatic tissue. In the present work, the coadministration of TCDD and HCB increased the concentration of hepatic proteins capable of binding [3H]TCDD specifically by at least 2-3-fold. This increase was shown not to be the result of activation, by HCB, of a form of the receptor having low affinity toward [3H]TCDD into a form with high affinity. Kinetic analysis of the time course of binding of [3H]TCDD to induced cytosol was consistent with the presence of an "inducible" binding protein in addition to the "constitutive" aryl hydrocarbon (Ah) receptor present in cytosol from untreated animals. The liganded ([3H]TCDD) form of the inducible binding component lost its ligand much faster than the liganded form of the constitutive Ah receptor at 37 degrees C; apparent first order rate constants for loss of [3H]TCDD were 0.55 min-1 and less than 0.0024 min-1, respectively. Conversely, the unliganded form of the induced binding component was slightly more stable (approximately 2-fold) toward thermal inactivation than the unbound constitutive Ah receptor. The [3H]TCDD-bound protein(s) in uninduced and induced cytosols behaved identically in a sucrose gradient; 8.7-8.9 S in the absence of salt, shifted to 5.5 S by 0.4 M KCl. They were also indistinguishable by gel permeation chromatography, and by photoaffinity labeling their TCDD-binding subunits, approximate molecular weights 105,000. These results show the hepatic TCDD-binding protein(s) induced upon pretreatment of Sprague-Dawley rats with TCDD/HCB to be kinetically distinct from the Ah receptor, but structurally very similar.  相似文献   

2.
The Ah (aromatic hydrocarbon) receptor mediates induction of aryl hydrocarbon hydroxylase (AHH; an enzyme activity associated with cytochrome P450IA1) by polycyclic aromatic hydrocarbon carcinogens such as 3-methylcholanthrene (MC) and benzo[a]pyrene (BP) and the halogenated toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Until recently the AhR seemed to be present only at very low levels in human cells and tissue. With a modified assay (the presence of sodium molybdate and a reduction in the amount of charcoal used to adsorb "excess" ligand) we found that cytosol from LS180 cells contains a high concentration of AhR (400-500 fmol/mg cytosolic protein) when detected by [3H]TCDD or [3H]MC. Cytosolic receptor also was detected with [3H]BP but at a level that was 35% of that detected with [3H]TCDD or [3H]MC. These levels are similar to those found in mouse Hepa-1 hepatoma cells in which AhR has been extensively characterized. The apparent binding affinity (Kd) of the cytosolic receptor for [3H]TCDD and for [3H]MC was about 5 nM. As with Hepa-1, the human LS180 cytosolic AhR sedimented at about 9 S on sucrose gradients when detected with [3H]TCDD, [3H]BP or [3H]MC. The nuclear-associated ligand.receptor complex recovered from cells incubated in culture with [3H]TCDD sedimented at about 6.2 S. The 9.8 S cytosolic form corresponds to a multimeric protein of a relative molecular mass (Mr) of about 285,000 whereas the 6.2 S nuclear receptor corresponds to a multimeric protein of Mr 175,000. The smallest specific ligand-binding subunit (detected by sodium dodecyl sulfate-polyacrylamide electrophoresis under denaturing conditions of receptor photoaffinity labeled with [3H]TCDD) was about Mr 110,000. AHH activity was induced in cells exposed in culture to TCDD or benz[a]anthracene (BA). The EC50 was 4 x 10(-10) M for TCDD and 1.5 x 10(-5) M for BA. For both inducers the EC50 in LS180 cells was shifted about one log unit to the right as compared to the EC50 for AHH induction in mouse Hepa-1 cells. The lower sensitivity of the LS180 cells to induction of AHH activity by TCDD or BA is consistent with the lower affinity of TCDD and MC for binding to human AhR. The ligand-binding properties, physicochemical properties, and mode of action of the AhR in this human cell line are therefore very similar to those of the extensively characterized AhR in rodent cells and tissues.  相似文献   

3.
Cytosol from rodent liver was exposed to a variety of sulfhydryl-modifying reagents to determine if the cytosolic Ah receptor contained reactive sulfhydryl groups that were essential for preservation of the receptor's ligand binding function. At a 2 mM concentration in rat liver cytosol, all sulfhydryl-modifying reagents tested (except iodoacetamide) both blocked binding of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to unoccupied receptor and caused release of [3H]TCDD from receptor sites that had been labeled with [3H]TCDD before exposure to the sulfhydryl-modifying reagent. Exposure of cytosol to iodoacetamide before labeling with [3H]TCDD prevented subsequent specific binding of [3H]TCDD, but iodoacetamide was not effective at displacing previously bound [3H]TCDD from the Ah receptor. The mercurial reagents, mersalyl, mercuric chloride, and p-hydroxymercuribenzoate, were more effective at releasing bound [3H]TCDD from previously labeled sites than were alkylating agents (iodoacetamide, N-ethylmaleimide) or the disulfide compound 5,5'-dithiobis(2-nitrobenzoate). Presence of bound [3H]TCDD substantially protected the Ah receptor against loss of ligand binding function when the cytosol was exposed to sulfhydryl-modifying reagents. This may indicate that the critical sulfhydryl groups lie in or near the ligand binding site on the receptor. Subtle differences exist between the Ah receptor and the receptors for steroid hormones in response to a spectrum of sulfhydryl-modifying reagents, but the Ah receptor clearly contains a sulfhydryl group (or groups) essential for maintaining the receptor in a state in which it can bind ligands specifically and with high affinity.  相似文献   

4.
The Ah receptor, a soluble cytoplasmic receptor that regulates induction of cytochrome P450IA1 and mediates toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was detected and characterized in the continuous human liver cell line Hep G2. The mean concentration of specific binding sites for TCDD was 112 +/- 26 (SEM) fmol/mg cytosol protein as determined in eight separate cytosol preparations in the presence of sodium molybdate. This is equivalent to 14,000 binding sites per cell, approximately 40% of the sites per cell found in the mouse hepatoma line Hepa-1. The cytosolic Ah receptor from Hep G2 cells sedimented at 9 S and was specific for those halogenated and nonhalogenated aromatic compounds known to be agonists for the Ah receptor in rodent tissues and cells. Specific binding in the 9 S region was detected with both [3H]TCDD and 3-[3H]methylcholanthrene. 3-[3H]Methylcholanthrene did not bind to any component besides that at approximately 9 S. Phenobarbital, dexamethasone, and estradiol did not compete with [3H]TCDD for binding to the Hep G2 Ah receptor. Specific binding of [3H]triamcinolone acetonide to glucocorticoid receptor could also be demonstrated in Hep G2 cytosol. The apparent equilibrium dissociation constant (Kd) for binding of [3H]TCDD to Hep G2 Ah receptor was 9 nM by Woolf plot analysis, about an order of magnitude weaker than the affinity of [3H]TCDD for the mouse Hepa-1 Ah receptor or for the C57BL/6 murine hepatic Ah receptor. [3H]TCDD.Ah receptor complex, which was extracted from nuclei of Hep G2 cells incubated with [3H]TCDD at 37 degrees C in culture, sedimented at approximately 6 S under conditions of high ionic strength. Aryl hydrocarbon hydroxylase (AHH) activity was significantly induced after 24 h of incubation with polycyclic aromatic hydrocarbons: the EC50 for AHH induction was 5.3 microM for benz(a)anthracene and 1.3 microM for 3-methylcholanthrene. Modification of the preparative technique for cell cytosol, especially inclusion of 20 mM sodium molybdate in homogenizing and other buffers, was necessary to detect cytosolic Hep G2 Ah receptor. Hep G2 cells appear to conserve drug-metabolizing activity associated with cytochrome P450IA1 as well as the receptor mechanism which regulates its induction.  相似文献   

5.
A rapid and sensitive filtration assay for quantitating the specific binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to whole cells in culture is described. Cell monolayers are incubated with [3H]TCDD in the presence or absence of excess unlabeled ligand, detached from the culture dish with trypsin, filtered, and washed with cold (-78 degrees C) acetone to separate free and nonspecifically bound TCDD from specifically bound TCDD. TCDD receptor binding parameters were characterized in the murine hepatoma cell line Hepa1c1c7. The lower limit of detection of TCDD specific binding was in a sample equivalent to 10 micrograms of total cell protein. The equilibrium dissociation constant and stereospecificity for binding to the TCDD receptor were the same as those previously reported with other TCDD receptor assays on broken cell preparations. Analysis of binding in the murine hepatoma TCDD receptor variants TAO-c1BPrc1 and BPrc1 indicated that this assay will detect receptor number or affinity variants, but will not detect nuclear transfer deficient variants. The major advantage of the whole cell binding assay is that it provides the means to rapidly and reproducibly quantitate TCDD specific binding in small samples of whole cells in culture. In addition, this method eliminates loss or degradation of the receptor protein during the fractionation of cells required in previously reported methods. This method should prove useful in screening clonal cell populations for TCDD receptor number and affinity variants, and in screening for TCDD receptor binding activity in complementation studies of receptor deficient cells.  相似文献   

6.
Hexachlorobenzene (HCB) produces hepatic porphyria and induces the hepatic cytochrome P450 isozymes P450c (P450IA1) and P450d (P450IA2) in rodents. These and other effects of HCB resemble those of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which acts via its binding to the aromatic hydrocarbon (Ah) receptor. We therefore examined the ability of HCB to interact with this receptor in vitro and in vivo. HCB, at concentrations of 1 microM or higher, inhibited the specific binding of [3H]TCDD (0.3 nM) to the Ah receptor in vitro, whereas the solubility of [3H]TCDD was affected only at 100 microM HCB. The inhibition was competitive, with a KI of approximately 2.1 microM. In rats fed a diet containing 3000 ppm HCB for varying times (4 h to 7 days), the specific binding of [3H]TCDD in hepatic cytosol was reduced by up to 40%, as observed previously for known Ah receptor agonists. The decrease in [3H]TCDD specific binding in cytosol of HCB-treated rats was due principally to a decrease in the number of binding sites for [3H]TCDD rather than competition from residual HCB. As shown by immunoblotting and radioimmunoassay, HCB induced the cytochrome P450 isozymes P450c and P450d, which are regulated by the Ah receptor, as well as the phenobarbital-inducible isozymes P450b and P450e. Together these results indicate that HCB is a weak agonist for the Ah receptor, and suggest that some of its effects may be mediated by its interaction with this gene-regulatory protein.  相似文献   

7.
The in vivo long-term cytosolic-nuclear kinetics and DNA-binding properties of the Ah receptor were examined in liver from the golden Syrian hamster. For the kinetic studies, a dose of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin ([3H]TCDD) that has been previously shown to produce maximal and sustained hepatic enzyme induction without substantial toxicity was used. Following an intraperitoneal dose of 10 micrograms/kg of [3H]TCDD, occupied cytosolic receptor levels reached a peak within 8 h and then decreased rapidly to a level that was approximately 2% of the total receptor. Throughout the 35-day period, unoccupied cytosolic receptor represented from 65 to 80% of the total receptor content. At 8 h following dosing, less than 30% of the total amount of receptor was associated with the nuclear fraction; this percentage declined slowly to less than 5% of the total at Day 35. The half-life for the decline in detectable nuclear receptor levels was 13 days and was similar to the half-life for the decline in [3H]TCDD content of the whole liver, cytosol, and nuclear extract. The Ah receptor contained in hamster hepatic cytosol underwent a ligand-dependent transformation in vitro to two forms having affinity for DNA-Sepharose, one of which was isolated from nuclei of animals treated with [3H]TCDD in vivo. A comparison of the specific binding recovered following various analytical procedures revealed that the binding of [3H]TCDD to the form not found in nuclear extracts was more labile under certain experimental conditions. These studies indicate the heterogeneity of the Ah receptor in hamster hepatic cytosol and suggest that DNA binding in vitro and nuclear uptake in vivo occur through a ligand-dependent transformation process. The maintenance of maximal hepatic enzyme induction is, in part, a consequence of the sustained presence in the nucleus of only a small percentage of the total receptor content. The whole-tissue kinetics of TCDD appears to be a major factor regulating the long-term retention of the TCDD-receptor complex in the nucleus.  相似文献   

8.
9.
6-Methyl-8-iodo-1,3,-dichlorodibenzofuran (I-MCDF) and its radiolabeled analog [125I]MCDF have been synthesized and used to investigate the mechanism of action of 1,3,6,8-substituted dibenzofurans as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) antagonists. Like 6-methyl-1,3,8-trichlorodibenzofuran (MCDF), I-MCDF partially antagonized the induction by TCDD of microsomal aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD) activities in rat hepatoma H-4-II E cells and male Long-Evans rat liver. Incubation of rat liver cytosol with [125I]MCDF followed by velocity sedimentation analysis on sucrose gradients gave a specifically bound peak which sedimented at 9.6 S. This radioactive peak was displaced by coincubation with a 200-fold excess of unlabeled I-MCDF, 6-methyl-1,3,8-trichlorodibenzofuran (MCDF), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and benzo [a]pyrene. Based on the velocity sedimentation results and the elution profile from a Sephacryl S-300 gel permeation column, the Stokes radius and apparent molecular weights of the cytosolic [125I]MCDF-Ah receptor complex were 6.5 nm and 259,200, respectively. In addition, the nuclear [125I]MCDF-receptor complex eluted at a salt concentration of 0.29 M KCl from a DNA-Sepharose column. Velocity sediment analysis of the nuclear [125I]MCDF-Ah receptor complex from rat hepatoma H-4-II E cells gave a specifically bound peak at 5.6 +/- 0.8 S. All of these properties were similar to those observed using [3H]TCDD as the radioligand. In addition, there were several ligand-dependent differences observed in the properties of the I-MCDF and TCDD receptor complexes; for example, the [125I]MCDF rat cytosolic receptor complex was unstable in high salt buffer and was poorly transformed into a form with increased binding affinity on DNA-Sepharose columns; Scatchard plot analysis of the saturation binding of [3H]TCDD and [125I]MCDF with rat hepatic cytosol gave KD values of 1.07 and 0.13 nM and Bmax values of 137 and 2.05 fmol/mg protein, respectively. The nuclear extract from rat hepatoma H-4-II E cells treated with I-MCDF or TCDD interacted with a dioxin-responsive element in a gel retardation assay. These results suggest that the mechanism of antagonism may be associated with competition of the antagonist receptor complex for nuclear binding sites.  相似文献   

10.
The Ah receptor protein, important in the mechanism of induction of aryl hydrocarbon hydroxylase activity, has been identified and partially characterized in hepatic cytosolic preparations from rat, BALB/c mouse, gerbil, hamster, rabbit, ferret and guinea-pig by means of sucrose density centrifugation analysis and hydroxyapatite binding assays. Using 2,3,7,8-tetrachloro[3H]dibenzo-p-dioxin (TCDD) as the ligand, total specific binding capacities ranged over 74-691 fmol [3H]TCDD/mg cytosolic protein and apparent dissociation constants ranged over 0.30-7.8 nM. There was no quantitative correlation between the concentration of cytosolic Ah receptors and the 3-methylcholanthrene-mediated induction of aryl hydrocarbon hydroxylase activity in the species studied. Competitive binding studies with a series of monohydroxylated benzo[a]pyrene derivatives suggested the importance of electronic character in their ability to bind to the Ah receptor and to compete with TCDD for specific binding sites on the receptor.  相似文献   

11.
The existence of a high-affinity, low-capacity 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-binding species was demonstrated in cytosol from rat thymus. It was sensitive to heat and to pronase, trypsin or chymotrypsin but not to DNAase or RNAase, indicating that it was a protein. An excess of unlabelled 2,3,7,8-tetrachlorodibenzofuran or β-naphthoflavone displaced [3H]TCDD from the binder whereas phenobarbital, pregnenolone-16-α-carbonitrile or dexamethasone did not compete. Using a dextra-coated charcoal assay, the apparent dissociation constant (Kd) of the [3H]TCDD-binder complex was determined to 0.36 nM and the apparent maximum amount of binding sites (Bmax) to 68 fmol/mg of cytosolic protein. When analyzed by sucrose density-gradient centrifugation at high ionic strength, the [3H]TCDD-binder complex sedimented at 4?5 S; at low ionic strength the complex sedimented more rapidly, probably due to aggregation. All these data support the interpretation that the demonstrated cytosolic TCDD-binder represents the receptor protein for TCDD, as previously described for rat and mouse liver. Following intravenous administration of [3H]TCDD, a low-capacity [3H]TCDD-macromolecule complex was extractable from thymic cell neuclei; this complex behaved identically to the cytosolic [3H]TCDD-receptor complex when exposed to heat or to hydrolytic enzymes and was therefore alos identified as a protein. The nuclear [3H]TCDD-protein complex sedimented at 4–5 S at high ionic strength. Furthermore, a maximum uptake of [3H]TCDD in thymic nuclei was observed simultaneously with a decline in cytosolic radioactivity (at 3 h post-injection). These findings suggest that the nuclear [3H]TCDD-protein complex represented [3H]TCDD-receptor complex translocated from the cytoplasm. In conclusion, the rat thymus contains a cytosolic TCDD receptor at a concentration similar to that of the rat hepatic receptor. However, in vivo experiments showed that the nuclear uptake of [3H]TCDD (expressed as dpm/mg GNA) in the thymus was only about 6% of that in liver. Further studies are needed for an understanding of the mechanism behind this discrepancy.  相似文献   

12.
In vivo benzodiazepine receptor binding has generally been studied by "ex vivo" techniques. In this investigation, we identify the conditions where [3H]-Ro 15-1788 labels benzodiazepine receptors by true "in vivo" binding, i.e. where workable specific to nonspecific ratios are obtained in intact tissues without homogenization or washing. [3H]-Flunitrazepam and [3H]-clonazepam did not exhibit useful in vivo receptor binding.  相似文献   

13.
In many species systemic toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is manifested by a generalized wasting syndrome accompanied by a variety of specific organ changes including atrophy of the thymus and spleen. TCDD toxicity in most tissues is thought to be mediated by the Ah receptor. Although the spleen is a prime target for TCDD toxicity, the possible presence of Ah receptor in the spleen has not previously been investigated. Specific binding of [3H]TCDD to Ah receptor in spleen cytosols was assessed by velocity sedimentation on sucrose gradients. Ah receptor was detected in spleen cytosols from adult Rhesus monkeys (mean +/- SEM, 36 +/- 8 fmol/mg cytosol protein), fetal Rhesus monkeys (9 +/- 6), Sprague-Dawley rats (20 +/- 5), C57BL/6J mice (18 +/- 2), New Zealand white rabbits (19 +/- 2), and Hartley guinea pigs (15 +/- 2). Ah receptor was not detectable in spleen cytosol from genetically "nonresponsive" DBA/2J mice or from Golden Syrian hamsters, a species resistant to toxicity of TCDD. Molecular properties of Ah receptor from spleen were similar to those of the receptor from liver of the same species. The high Ah receptor content in spleen cytosols from those species that are most susceptible to TCDD toxicity is consistent with the view that the Ah receptor mediates TCDD toxicity in spleen as well as in other tissues.  相似文献   

14.
Rat hepatic cytosol was treated with alkaline phosphatase in order to determine if dephosphorylation altered the ability of Ah receptor to bind 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD). Glucocorticoid receptor was studied for comparison. As previously had been shown in other laboratories, treatment of cytosol with purified alkaline phosphatase dramatically reduced the subsequent ability of glucocorticoid receptor to bind hormone. However, alkaline phosphatase had no effect on the ability of Ah receptor to bind [3H]TCDD. If either glucocorticoid receptor or Ah receptor was occupied by its ligand prior to exposure to alkaline phosphatase there was no loss in ligand binding capacity. Crude alkaline phosphatase (containing some protease activity) substantially reduced the ability of glucocorticoid receptor to bind hormone and shifted the sedimentation position of the glucocorticoid receptor from approximately 8 S to approximately 2 S. Crude alkaline phosphatase did not reduce the ability of Ah receptor to bind [3H]TCDD and did not alter sedimentation of the 9 S [3H]TCDD. Ah receptor complex. Although the Ah receptor appears to be a member of the steroid receptor superfamily, the lack of effect of alkaline phosphatase on Ah receptor (compared to the sensitivity of glucocorticoid receptor) highlights another significant difference in molecular characteristics between the Ah receptor and the receptors for steroid hormones.  相似文献   

15.
The purpose of this study was to partially characterize the steroid binding activity of murine renal tumor cells in continuous culture. The steroid receptor content of a cloned renal tumor cell line (RAG) and a subline RAG-2 was examined by sucrose gradient analysis, hydroxylapatite and dextran-coated charcoal methods. The RAG cells lacked estrogen- and progestin-binding activity, whereas specific 5 alpha-dihydrotestosterone (DHT) and dexamethasone (Dx) binding activities were detected as 8S peaks on low salt gradients. The specificity of DHT binding was examined by sucrose gradient analysis: DHT, R1881 and ORG2058 all completely inhibited [3H]DHT binding whereas diethylstilbestrol and Dx were ineffective. The androgen receptor content of the RAG cells was approx. 15 fmol/mg cytosol protein by the hydroxylapatite-filter assay, with an estimated Kd for methyltrienolone (R1881) of 5 nM at 0 degrees C. Scatchard analysis of [3H]Dx binding by RAG cytosol showed a Kd of 6 nM for Dx and 44 nM for corticosterone at 0 degrees C. Glucocorticoid receptor levels were estimated to be 182 fmol/mg cytosol protein by dextran-coated charcoal assay. Metabolism of [3H]testosterone and [3H]DHT by RAG cells was examined 1, 4 and 6 h after exposure to labeled hormone. Radioactive DHT was the primary intracellular metabolite recovered after exposure to [3H]testosterone. There was little conversion of DHT to androstanediol.  相似文献   

16.
In vivo treatment of chicks, quail and rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3-methylcholanthrene (MC) caused a dose-dependent increase in hepatic microsomal aryl hydrocarbon hydroxylase activity. A much lower level of AHH induction was observed following similar treatment of trout with high concentrations of TCDD or MC. No induction was apparent in midgut tissues from southern armyworm larvae exposed to the same inducers. A low level of receptor exhibiting specific binding of [3H]TCDD was demonstrated in chick hepatic cytosol, but no evidence of receptor was obtained with the other species. Although the specific binding of the receptor in chick cytosol was only 6-8 fmoles TCDD bound/mg protein compared to 135 fmoles/mg in rat hepatic cytosol, the chick receptor exhibited properties similar to those of Ah receptors in mammals.  相似文献   

17.
The ability of protamine sulfate to effect the quantitative precipitation of 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD):Ah receptor complexes from rat liver cytosol has been developed into a new assay for the identification, quantitation, and characterization of the Ah receptor. The method is reliable, uncomplicated, and rapid, and can be applied to large numbers of samples. The major advantage of the assay is that protamine sulfate appears to selectively precipitate the Ah receptor protein and does not precipitate a number of other proteins that bind [3H]TCDD nonspecifically.  相似文献   

18.
A series of detergents of varying chemical properties has been tested for solubilisation of bovine caudate nucleus D2 dopamine receptors using [3H]spiperone binding to assay the solubilised sites. The properties of the lysophosphatidylcholine (LPC)- and 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulphonate (CHAPS)-solubilised preparations are described in detail. The preparations are truly solubilised, and sucrose density gradient and gel filtration data are reported. Specific [3H]spiperone binding in the LPC-solubilised preparation assayed at 4 degrees C is solely to D2 dopamine receptors. If the assay temperature is raised to 25 degrees C, the amount of specific [3H]spiperone binding is largely unchanged, but it forms a greater proportion of the total [3H]spiperone binding owing to a reduction in nonstereospecific (spirodecanone) [3H]spiperone binding at the higher temperature. The effect of raising the assay temperature is important as it enables more precise determinations of specific [3H]spiperone binding to be made. Part of the specific [3H]spiperone binding at 25 degrees C is to solubilised S2 serotonin receptors in addition to D2 dopamine receptors. Good correlations are observed between the affinities for binding of ligands to the solubilised D2 receptors and corresponding data obtained on membrane-bound receptors. Agonist binding in LPC-solubilised preparations is insensitive to guanine nucleotides. It is speculated that the spirodecanone sites represent, in part, proteolysed or damaged D2 dopamine, or S2 serotonin, receptors. In the CHAPS-solubilised preparation the pharmacological profile of [3H]spiperone binding is unclear when assayed at 4 degrees C, but in assays at 25 degrees C a clear serotonin S2 receptor component of specific [3H]spiperone binding can be discerned.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 gene expression as determined by increased CYP1A1 mRNA levels and ethoxyresorufin O-deethylase (EROD) activity in mouse Hepa 1c1c7, rat hepatoma H-4II E and human Hep G2 cancer cell lines. In contrast, treatment of these cell lines with either alpha-naphthoflavone (alpha NF) or 6-methyl-1,3,8-trichlorodibenzofuran (MCDF) at concentrations as high as 10(-6) M resulted in only minimal induction of CYP1A1 mRNA levels or EROD activity. Cotreatment of the cells with 10(-9) M TCDD plus different concentrations (10(-8)-10(-6) M) of MCDF or alpha NF resulted in a concentration-dependent decrease in TCDD-induced CYP1A1 mRNA levels and EROD activity in the three cell lines. Moreover, using 10(-9) M [3H]TCDD, it was shown that the alpha NF- and MCDF-mediated antagonism of TCDD-induced CYP1A1 gene expression was paralleled by a decrease in levels of the nuclear [3H]TCDD-Ah receptor complex as determined by velocity sedimentation analysis of the nuclear extracts. The binding of nuclear extracts from the treated cells to a synthetic consensus dioxin responsive element (DRE) (a 26-mer) was determined by gel retardation studies using 32P-DRE. In cells treated with 10(-9) M TCDD or TCDD plus 10(-8)-10(-6) M alpha NF, the concentration-dependent decrease in TCDD-induced CYP1A1 gene expression by alpha NF was also paralleled by decreased levels of a retarded band associated with the nuclear Ah receptor-DRE complex. In contrast, the results of the gel shift assay of nuclear extracts treated with 10(-9) M TCDD or TCDD plus 10(-8)-10(-6) M MCDF indicated that there were relatively high levels of nuclear MCDF-Ah receptor complex in the cells co-treated with TCDD plus the antagonist but this was not accompanied by induced CYP1A1 gene expression. The results suggest that alpha NF and possibly MCDF compete with TCDD for cytosolic Ah receptor binding sites; however, MCDF may also inhibit the induction response by competing for and/or partially inactivating genomic binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号