首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net fluxes of H+ and Ca2+ around the elongation region of low-salt corn (Zea mays L.) roots were measured using the microelectrode ion flux estimation (MIFE) technique. At pH 5.2 two oscillatory components were found. Fast, 7-min oscillations in H+ flux were superimposed on slow oscillations of about 1.5 h. Fast oscillations in Ca2+ flux showed a strong dependence on the H+ oscillations and were normally leading in phase by about 1 to 1.5 min. Both oscillatory components were strongly affected by external pH values. Preincubation for 20 h in buffered pH 4.0 solution suppressed the slow oscillatory component and caused huge H+ influxes in the elongation region. The fast oscillations were 8 times larger in amplitude and were slightly lengthened. Preincubation at pH 6.0 did not suppress the rhythmic character of the ion fluxes but it shifted the average H+ flux to greater efflux. The fast and slow oscillatory components of H+ flux seem to relate to biophysical and biochemical mechanisms of intracellular pH homeostasis, respectively. The origin of the Ca2+ flux oscillations is discussed in terms of the "weak acid Donnan Manning" model of cell wall ion exchanges.  相似文献   

2.
Receptor regulation of [Ca2+]i was monitored in individual BC3H-1 muscle cells with intracellularly trapped fura-2 using digital imaging analysis techniques. Activation of alpha 1-adrenergic or H1-histaminergic receptors resulted in multiple bursts, or oscillations, of elevated [Ca2+]i with an average interval frequency of approximately 1.8 min-1. The duration of oscillatory behavior was generally more prolonged in response to phenylephrine than in response to histamine. Additionally, a larger fraction of the cells responded with [Ca2+]i oscillations to phenylephrine (approximately 90%) than to histamine (approximately 60%), although the majority of cells produced oscillations in response to both agonists. In most cells, the receptor-mediated [Ca2+]i oscillations continued for several minutes in the absence of extracellular Ca2+, although the amplitude of the individual peaks gradually decreased. The activation of [Ca2+]i oscillations by H1-receptors was more dependent upon extracellular Ca2+ than those elicited by alpha 1-receptors, reflecting the greater dependency of the histaminergic response on Ca2+ influx. Readdition of Ca2+ to the incubation buffer resulted in the resumption of the [Ca2+]i oscillations. These results indicate that considerable cycling of Ca2+ between the cytoplasm and the endoplasmic reticulum must occur. Receptor-mediated [Ca2+]i oscillations were much more prevalent in subconfluent cells than in confluent cells, possibly due to increased coupling of the cells at higher densities. The cells were capable of responding independently of one another, since sister cells displayed unique temporal responses immediately following cell division. Thus, the linkage of receptor occupancy to [Ca2+]i elevation is a functionally unique property for each individual cell and can be influenced by epigenetic factors.  相似文献   

3.
Although oscillations in membrane-transport activity are ubiquitous in plants, the ionic mechanisms of ultradian oscillations in plant cells remain largely unknown, despite much phenomenological data. The physiological role of such oscillations is also the subject of much speculation. Over the last decade, much experimental evidence showing oscillations in net ion fluxes across the plasma membrane of plant cells has been accumulated using the non-invasive MIFE technique. In this study, a recently proposed feedback-controlled oscillatory model was used. The model adequately describes the observed ion flux oscillations within the minute range of periods and predicts: (i) strong dependence of the period of oscillations on the rate constants for the H+ pump; (ii) a substantial phase shift between oscillations in net H+ and K+ fluxes; (iii) cessation of oscillations when H+ pump activity is suppressed; (iv) the existence of some 'window' of external temperatures and ionic concentrations, where non-damped oscillations are observed: outside this range, even small changes in external parameters lead to progressive damping and aperiodic behaviour; (v) frequency encoding of environmental information by oscillatory patterns; and (vi) strong dependence of oscillatory characteristics on cell size. All these predictions were successfully confirmed by direct experimental observations, when net ion fluxes were measured from root and leaf tissues of various plant species, or from single cells. Because oscillatory behaviour is inherent in feedback control systems having phase shifts, it is argued from this model that suitable conditions will allow oscillations in any cell or tissue. The possible physiological role of such oscillations is discussed in the context of plant adaptive responses to salinity, temperature, osmotic, hypoxia, and pH stresses.  相似文献   

4.
5.
1. Frog skin epithelium has basolateral K+ channels that normally define the basolateral membrane potential between 80 and 100 mV. 2. The membrane mentioned also has almost silent chloride channels and a [Na+, K+, 2Cl-] cotransport, the latter probably maintains the high Cl- in the capital (also called syncytium) cells. 3. If the K+ channels are blocked by Ba2+ (or Li+) it is possible to demonstrate potential gating of the chloride channels of the basolateral membrane. 4. When the normal K+ channels are blocked, a potential-dependent K+ conductance slowly emerges. 5. If Li+ is substituted for outside Na+ the skin shows potential oscillations of about 40 mV at a frequency of about six per hour. 6. The anion channel inhibitor Indacrinone stops these oscillations. 7. The role of Cl- and K+ channels in these oscillations is discussed. 8. The transepithelial inward transport of Li+ requires the presence of Na+ and seems to be due to exchange of cellular Li+ against inside Na+ via the basolateral Na+/H+ exchanger.  相似文献   

6.
Glucose stimulation of insulin release involves metabolism of the sugar and elevation of cytoplasmic calcium (Ca2+i) in pancreatic B-cells. We compared the dynamic changes of metabolism (fluorescence of endogenous reduced pyridine nucleotides, NAD(P)H), membrane potential (intracellular microelectrodes), and Ca2+i (fura-2 technique), in intact mouse islets. Glucose (15 mM) sequentially triggered an increase in NAD(P)H fluorescence, a depolarization with electrical activity, and a rise in Ca2+i. The change in NAD(P)H was monophasic and regular, whereas the changes in membrane potential and Ca2+i were multiphasic, with steady-state regular oscillations of similar average frequencies (about 2.2/min). Digital image analysis revealed that Ca2+i oscillations were synchronous in all regions of the islets. Omission of extracellular Ca2+ abolished the rise in Ca2+i but not the increase in NAD(P)H. Both electrical and Ca2+i oscillations disappeared in low external Ca2+ (1 mM), and became larger but slower in high Ca2+ (10 mM). Sustained depolarization (by tolbutamide, arginine, or high K+) and hyperpolarization (by diazoxide) of B-cells caused sustained increases and decreases of Ca2+i, respectively. In conclusion, the changes in membrane potential induced by various secretagogues trigger synchronous changes in Ca2+i in all B-cells of the islets. The oscillatory pattern of the electrical and Ca2+i responses induced by glucose is not accompanied by and thus probably not due to similar oscillations of metabolism.  相似文献   

7.
Reactive oxygen species, such as the superoxide anion, H2O2, and the hydroxyl radical, have been considered as cytotoxic by-products of cellular metabolism. However, recent studies have provided evidence that H2O2 serves as a signaling molecule modulating various physiological functions. Here we investigated the effect of H2O2 on the regulation of intracellular Ca2+ signaling in rat cortical astrocytes. H2O2 triggered the generation of oscillations of intracellular Ca2+ concentration ([Ca2+]i) in a concentration-dependent manner over the range 10-100 microM. The H2O2-induced [Ca2+]i oscillations persisted in the absence of extracellular Ca2+ and were prevented by depletion of intracellular Ca2+ stores with thapsigargin. The H2O2-induced [Ca2+]i oscillations were not inhibited by pretreatment with ryanodine but were prevented by 2-aminoethoxydiphenyl borate and caffeine, known antagonists of inositol 1,4,5-trisphosphate receptors. H2O2 activated phospholipase C (PLC) gamma1 in a dose-dependent manner, and U73122, an inhibitor of PLC, completely abolished the H2O2-induced [Ca2+]i oscillations. In addition, RNA interference against PLCgamma1 and the expression of the inositol 1,4,5-trisphosphate-sequestering "sponge" prevented the generation of [Ca2+]i oscillations. H2O2-induced [Ca2+]i oscillations and PLC1 phosphorylation were inhibited by pretreatment with dithiothreitol, a sulfhydryl-reducing agent. Finally, epidermal growth factor induced H2O2 production, PLCgamma1 activation, and [Ca2+]i increases, which were attenuated by N-acetylcysteine and diphenyleneiodonium and by the overexpression of peroxiredoxin type II. Therefore, we conclude that low concentrations of exogenously applied H2O2 generate [Ca2+]i oscillations by activating PLCgamma1 through sulfhydryl oxidation-dependent mechanisms. Furthermore, we show that this mechanism underlies the modulatory effect of endogenously produced H2O2 on epidermal growth factor-induced Ca2+ signaling in rat cortical astrocytes.  相似文献   

8.
The photoreduction of ubiquinone in the electron acceptor complex (QIQII) of photosynthetic reaction centers from Rhodopseudomonas sphaeroides, R26, was studied in a series of short, saturating flashes. The specific involvement of H+ in the reduction was revealed by the pH dependence of the electron transfer events and by net H+ binding during the formation of ubiquinol, which requires two turnovers of the photochemical act. On the first flash QII receives an electron via QI to form a stable ubisemiquinone anion (QII-); the second flash generates QI-. At low pH the two semiquinones rapidly disproportionate with the uptake of 2 H+, to produce QIIH2. This yields out-of-phase binary oscillations for the formation of anionic semiquinone and for H+ uptake. Above pH 6 there is a progressive increase in H+ binding on the first flash and an equivalent decrease in binding on the second flash until, at about pH 9.5, the extent of H+ binding is the same on all flashes. The semiquinone oscillations, however, are undiminished up to pH 9. It is suggested that a non-chromophoric, acid-base group undergoes a pK shift in response to the appearance of the anionic semiquinone and that this group is the site of protonation on the first flash. The acid-base group, which may be in the reaction center protein, appears to be subsequently involved in the protonation events leading to fully reduced ubiquinol. The other proton in the two electron reduction of ubiquinone is always taken up on the second flash and is bound directly to QII-. At pH values above 8.0, it is rate limiting for the disproportionation and the kinetics, which are diffusion controlled, are properly responsive to the prevailing pH. Below pH 8, however, a further step in the reaction mechanism was shown to be rate limiting for both H+ binding electron transfer following the second flash.  相似文献   

9.
Periodic cyclic-AMP pulses control the cell aggregation and differentiation of Dictyostelium discoideum. Another component required for the aggregation and differentiation of these cells appears to be extracellular Ca+ +. Oscillations in extracellular Ca+ + concentration were investigated in suspensions of differentiating cells. We observed spike-shaped and sinusoidal Ca+ + oscillations. In the course of differentiation, spike-shaped Ca+ + oscillations preceded sinusoidal oscillations, and no phase change occurred at the transition from spike-shaped to sinusoidal Ca+ + oscillations. Spike-shaped and sinusoidal Ca+ + oscillations were related to oscillations in (1) the cyclic-AMP and cyclic-GMP content of cells, (2) the light-scattering properties of cells, and (3) the extracellular pH. Spikeshaped Ca+ + oscillations were observed together with cyclic-AMP oscillations. The minima of the extracellular Ca+ + concentration trailed the maxima of the cyclic-AMP concentration by about 30 s. Sinusoidal Ca+ + oscillations were not accompanied by measurable cyclic-AMP oscillations. The amplitudes of the sinusoidal Ca+ + oscillations were smaller than those of the spike-shaped Ca+ + oscillations. A Ca+ + oscillation of small amplitude (instead of a spike-shaped oscillation) was observed when one cyclic-AMP spike was skipped. Our results provide evidence for the existence of a sinusoidal cyclic-AMP-independent Ca+ + oscillation of small amplitude, and they also suggest that spike-shaped Ca+ + oscillations may be superimposed on such small-amplitude oscillations. When D. discoideum cells produce cyclic-AMP spikes, the uptake of additional Ca+ + is induced, resulting in Ca+ + oscillations of a large amplitude.  相似文献   

10.
The dependence of ionophore-induced oscillations in rat erythrocytes on various concentrations of A23187, FCCP and Ca2+ was analysed using ion-selective electrodes. The oscillations were shown to be independent of the extracellular concentration of carbonylcyanide p-trifluoromethoxyphenylhydrazone and Ca2+. The dependence of oscillations on the concentration A23187 was shown to be a threshold characteristic and represented by a bell-shaped curve. In the course of oscillations the redistribution of A23187 between cells and the incubation medium was demonstrated using high-speed centrifugation. A hypothesis for oscillatory-state generation in erythrocytes was suggested on the basis of pH-dependent changes of the Ca2+ ionophore A23187 content in cells. According to this hypothesis the H+ concentration within the external membrane-adjacent layer serves as a causative factor for induction of cyclic desorption of A23187 molecules from the cell membrane.  相似文献   

11.
The presence of the poky mutation in Neurospora crassa produces mitochondria which are defective in cytochromes b and aa3 but which compensate by means of an alternate, cyanide-insensitive oxidase. As previously reported (Slayman, Rees, Orchard & Slayman, J. Biol. Chem., 250:396, 1975) cyanide blockade of the poky strain carrying the partial suppressor f results in a metabolic downshift of only 56%, compared with a downshift of 98% in wild-type Neurospora; the downshift is accompanied by exponential decay of ATP in the wild type, but by an undershoot and monotonic recovery of ATP in poky f. Whereas the membrane potential declines with ATP in wild-type Neurospora, it oscillates near the resting level (ca. -- 185 mV) in poky f. Oscillations begin with a depolarizing swing of 30--100 mV, followed by slight hyperpolarization, then by 2--4 damped cycles having a frequency near 1/min. Similar oscillations arise with antimycin, salicyl hydroxamic acid, and several uncoupling agents, and depend on partial maintenance of respiration through either the defective cytochrome chain or the alternate oxidase. Small oscillations (maximally +/- 30% of the control value) in membrane conductance also occur, roughly in phase with the oscillations of membrane potential. The amplitude of these, in comparison with the nonlinearity of the normal current-voltage relationship for the membrane, strongly suggests that they arise as a secondary consequence of the voltage changes. Therefore, since it has previously been argued (Slayman, Long & Lu, J. Membrane Biol. 14:305, 1973) that most of the resting membrane potential in the organism arises from active extrusion of H+ ions, the simolest interpretation of the cyanide-induced voltage oscillations is that current through the H+ pump is modulated cyclically. The ultimate mechanism for this modulation is unresolved, but could plausible involve a metabolic feedback system, oscillations of intracellular pH, or both. In many respects the observed voltage oscillations resemble the well-known oscillations of mitochondrial H+ flux which are produced by sudden metabolic shifts.  相似文献   

12.
Intracellular Ca2+ oscillations are often a response to external signals such as hormones. Changes in the external signal can alter the frequency, amplitude, or form of the oscillations suggesting that information is encoded in the pattern of Ca2+ oscillations. How might a cell decode this signal? We show that an excitable system whose kinetic parameters are modulated by the Ca2+ concentration can function as a Ca2+ oscillation detector. Such systems have the following properties: (1) They are more sensitive to an oscillatory than to a steady Ca2+ signal. (2) Their response is largely independent of the signal amplitude. (3) They can extract information from a noisy signal. (4) Unlike other frequency sensitive detectors, they have a flat frequency response. These properties make a Ca(2+)-sensitive excitable system nearly ideal for detecting and decoding Ca2+ oscillations. We suggest that Ca2+ oscillations, in concert with these detectors, can act as cellular timekeepers to coordinate related biochemical reactions and enhance their overall efficiency.  相似文献   

13.
Using the ratiometric Ca2+ indicator, indo-1, the antigen-induced increase in intracellular Ca2+ concentration ([Ca2+]i) was measured in individual RBL-2H3 cells which had been passively sensitized with monoclonal antibody to the dintrophenyl (DNP) haptenic group. Antigenic stimulation using DNP-human serum albumin conjugate (DNP-HSA) induced concentration-dependent asynchronous Ca2+ oscillations, or irregular spikes. To achieve a quantitative comparison of the effects of different concentrations of antigen on changes in Ca2+[i, the area under the curve (AUC) of Ca2+ oscillations in each cell was calculated. The dose-response curve of the calculated AUC is consistent with the bell-shaped dose-response curve for antigen-induced mediator release, depolarization and 86Rb(+)-efflux. Ca2+ oscillations induced by antigenic stimulation were abolished by removal of external Ca2+ and the subsequent reintroduction of external Ca2+ caused their resumption. To investigate the role of Ca2+ oscillations in the secretory response, changes in [Ca2+]i induced by concanavalin A (Con-A), A23187, thapsigargin and NECA were also monitored. Con-A mimicked the response induced by antigen, whilst A23187 and thapsigargin induced a large transient non-oscillatory response. NECA, an adenosine receptor agonist, induced only a small transient rise in Ca2+[i without oscillatory behaviour. Since all these stimuli accept NECA-induced degranulation in these cells, it is suggested that, although Ca2+ oscillations are not essential for the initiation of secretion, they probably underlie the in-vivo physiological response of mast cells and basophils to an antigenic challenge. They also seem to enhance the efficacy of the Ca2+ signal.  相似文献   

14.
Sustained oscillations of transmembrane fluxes of Ca2+ and other ions in isolated mitochondria are described. The data are presented that the major cause of the oscillations is the Ca2+-induced Ca2+ efflux from the mitochondrial matrix and spontaneous opening/closing of the permeability transition pore in the inner mitochondrial membrane. Conditions favourable for the generation of oscillations are considered. The role of phospholipid peroxidation and hydrolysis in the generation of [Ca2+] oscillations is emphasized. Literature data concerning [Ca2+] changes in the mitochondrial matrix in intact cells and the data on the participation of mitochondria in intracellular Ca2+ oscillation and in the Ca2+ wave propagation are reviewed. The hypothesis that mitochondria are able to generate [Ca2+] oscillations in intact cells is put forward. It is assumed that Ca2+ oscillations can protect mitochondria of resting cells from osmotic shock and oxidative stress.  相似文献   

15.
In human HeLa carcinoma cells, histamine causes a dose-dependent formation of inositol phosphates, production of diacylglycerol and a transient rise in intracellular [Ca2+]. These responses are completely blocked by the H1-receptor antagonist pyrilamine. In streptolysin-O-permeabilized cells, formation of inositol phosphates by histamine is strongly potentiated by guanosine 5'-[gamma-thio]triphosphate and inhibited by guanosine 5'-[beta-thio]diphosphate, suggesting the involvement of a GTP-binding protein. Histamine stimulates the rapid but transient formation of Ins(1,4,5)P3, Ins(1,3,4)P3 and InsP4. InsP accumulates in a much more persistent manner, lasting for at least 30 min. Studies with streptolysin-O-permeabilized cells indicate that InsP accumulation results from dephosphorylation of Ins(1,4,5)P3, rather than direct hydrolysis of PtdIns. The rise in intracellular [Ca2+] is biphasic, with a very fast release of Ca2+ from intracellular stores, that parallels the Ins(1,4,5)P3 time course, followed by a more prolonged phase of Ca2+ influx. In individual cells, histamine causes a rapid initial hyperpolarization of the plasma membrane, which can be mimicked by microinjected Ins(1,4,5)P3. Histamine-induced hyperpolarization is followed by long-lasting oscillations in membrane potential, apparently owing to periodic activation of Ca2+-dependent K+ channels. These membrane-potential oscillations can be mimicked by microinjection of guanosine 5'-[gamma-thio]triphosphate, but are not observed after microinjection of Ins(1,4,5)P3. We conclude that H1-receptors in HeLa cells activate a PtdInsP2-specific phospholipase C through participation of a specific G-protein, resulting in long-lasting oscillations of cytoplasmic free Ca2+.  相似文献   

16.
The present paper concerns with ion homeostatic reactions in view of stimulus-secretion coupling of the beta-cell, including Ca2+ fluxes of the endoplasmatic reticulum (ER). A steady state of cytosolic sodium and potassium ion concentrations ([Na+]c and [K+]c, respectively), and of the membrane potential (Delta c phi) can be attained only, if the flux through the electrogenic Na-K pump (JNaK) is balanced electrically, and if JNaK is rather high (about 25% of total ATP consumption at 10 mM glucose). Metabolically caused changes of cellular pH are unlikely, because, on the one hand, CO2 can rapidly leave the cell through cellular membranes, and because ATP cycling cannot produce nor consume protons. A slight decrease of pHc during cellular activity is caused mainly by an increased Ca-H exchange flux through the plasma membrane Ca2+ pump (J PMCA), which might be overcome, however, by H+ transport into secretory granules. The present simulations show that the conductance of ATP-sensitive K+ channels (K ATP) is highly susceptible to changes of [Mg2+]c. As a physical link between the Ca2+ filling state of the ER and the initiation of a depolarising, Ca2+ release-activated current (I CRAN), a metabolite (inositol 1,4,-diphosphate (IP2)) of the inositol 1,4,5-triphosphate (IP3) cycle is introduced. Sufficient ATP for insulin secretion is made available during glucose activation by [IP2] inhibition of a parallel [ATP]c consuming flux through protein biosynthesis (J Pbs). This leads to fast oscillations with a triphasic patterns of [Ca2+]c oscillations. Slow oscillations are initiated by including a Ca2+ leak current through highly uncoupled SERCA3 pumps. Both types of oscillations may superimpose yielding compound bursting and mixed oscillations of [Ca2+]c.  相似文献   

17.
At fertilisation of mammalian and ascidian eggs the sperm induces a series of Ca2+ oscillations. These Ca2+ oscillations are triggered by a sperm-borne Ca2+-releasing factor whose identity is still unresolved. In both mammals and ascidians Ca2+ oscillations in eggs are associated with the period leading up to exit from meiosis and entry into the first embryonic cell cycle. Thus, in mammals Ca2+ oscillations continue for several hours but are complete by within 30 min in the ascidian. In mammals and ascidians Ca2+ oscillations stop at around the time when pronuclei form in the 1-cell embryo. There is evidence to show that cell cycle factors are important in regulating the fertilisation Ca2+ signal. If the formation of pronuclei is blocked either in mammals (by spindle disruption) or in ascidians (by clamping maturation promoting factor levels high) then Ca2+ oscillations continue indefinitely. Here, we explore the nature of the sperm Ca2+-releasing factor and examine the relationship between cell cycle resumption and the control of Ca2+ oscillations at fertilisation.  相似文献   

18.
Stimulation with extracellular ATP causes a rapid initial transient rise followed by asynchronous periodic oscillations in cytosolic calcium ion activity ([Ca2+]i) in individual aortic smooth muscle cells in either HEPES-buffered or HCO3(-)-buffered saline. The dose at which one-half of the cells display an initial rise in cytosolic calcium is 0.11 microM ATP in the presence of external Ca2+ and 0.88 microM ATP in the absence of external Ca2+; the corresponding value for oscillations in the presence of external Ca2+ is 2.6 microM ATP. While the initial transient displays rapid desensitization, the oscillations persist for greater than 30 min in the continuous presence of ATP. The presence of the agonist ATP is also absolutely required for the maintenance of the oscillations, presumably to provide continuous activation of P2 purinoceptors. The average frequency of oscillation is approximately 0.9 min-1. The frequency depends only slightly on the concentration of ATP, and oscillations do not collapse into a prolonged elevated [Ca2+]i at high concentrations of ATP. Both Ca2+ influx and release from internal stores participate in the initial transient. Oscillations are not produced in the absence of external Ca2+ but are initiated upon the addition of external Ca2+ in the continued presence of ATP. Oscillations in progress are abolished by the removal of extracellular Ca2+ with one additional peak occurring after the Ca2+ removal. These data suggest that extracellular Ca2+ influx is required for the maintenance of the posttransient oscillations, presumably to provide the Ca2+ necessary for refilling intracellular Ca2+ pools that are the source of the oscillating [Ca2+]i. The Ca2+ influx is not regulated by voltage-gated Ca2+ channels. The data in this report are consistent with the view that the initial transient has contributions from two receptor-mediated pathways, and the oscillations are controlled either by a mechanism separate from the ones that control the initial transient or by steps whose control diverges before the point of desensitization.  相似文献   

19.
INTRODUCTION In vascular smooth muscle, as in other types of muscle,an increase in intracellular Ca2 is the immediate triggerfor contraction, which ultimately determines vascular toneand peripheral resistance. In the past 12 years, investiga-tors have …  相似文献   

20.
Messerli MA  Robinson KR 《Planta》2003,217(1):147-157
Two mechanisms have been proposed as the primary control of oscillating tip growth in Lilium longiflorum Thunb. pollen tubes: changes in cell wall strength (Holdaway-Clarke et al. 1997) or alternatively, changes in turgor pressure (Messerli et al. 2000). Here we have modified the ionic and osmotic concentrations of the growth medium to test predictions derived from both models. Raising the [Ca2+]o tenfold above normal reduced the amplitude of the [Ca2+]i oscillations and growth oscillations while it raised the basal [Ca2+]i and growth rate such that the average growth rate did not change. Raising the [H+] of the growth medium tenfold reversibly decreased and sometimes eliminated the [Ca2+]i and growth oscillations without changing the average growth rate. Lowering the [H+] tenfold led to irregular frequency and amplitude [Ca2+]i oscillations, reduced the average growth rate of tubes and led to cell bursting in 33% of tubes. Addition of 50 mM H+ buffer, MES, to prevent pH changes in the cell wall increased the period, amplitude and duration of both [Ca2+]i and growth oscillations. Changing the [K+]o did not markedly effect [Ca2+]i oscillations. Reducing the osmolarity of the medium led to transient large-amplitude [Ca2+]i and growth oscillations while reducing large-amplitude oscillations over long periods. In many different conditions under which growth still occurs, lily pollen tubes maintain growth oscillations, albeit with modified frequency, amplitude and duration. We conclude that modifications to both proposed models are necessary to explain oscillating growth in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号