首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Summary The lower Vmax of 6PGDH with respect to G6PDH and its higher sensitivity to inhibition by NADPH, suggest the existence of an imbalance between the two dehydrogenases of the pentose phosphate pathway in rat liver. Possible modulators of these activities, particularly in relation with the inhibition by NADPH in physiological conditions, have been investigated. The results suggest that in both cases the inhibition by NADPH is strictly isosteric and that the relative affinities for the reduced and oxidized forms of the pyridine nucleotide are unaffected by glutathion, the intermediates of the pentose phosphate shunt or some divalent ions.Abbreviations G6PDH glucose-6-phosphate dehydrogenase (EC 1.1.1.49) - 6PGDH 6-phosphogluconate dehydrogenase (EC 1.1.1.44) On leave from the Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.  相似文献   

4.
5.
6.
7.
Thessaly variant of glucose-6-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

8.
Crystals of D-glucose-6-phosphate: NADP+ oxidoreductase were obtained with the hanging drop, vapor diffusion and batch methods from ammonium sulfate-containing solutions. X-ray diffraction photographs indicate that the crystals belong to the orthorhombic space groups I222 or I2(1)2(1)2(1) with unit cell dimensions of a = 66.0 A, b = 140.8 A and c = 177.8 A. These data, together with results from sodium dodecyl sulfate/polyacrylamide gel electrophoresis and crystal density experiments, indicate that there is one 116,000 Mr dimer per asymmetric unit. The crystals diffract to at least 2.2 A and are suitable for X-ray crystallographic structure determination.  相似文献   

9.
It has been suggested by some authors that during amphibian development, due to the higher glucose-6-phosphate dehydrogenase (EC 1.1.1.49) activity compared to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.43), 6-phosphogluconate could accumulate in the embryo tissues and regulate the channelling of glucose-6-phosphate into glycolysis. Here, on the base of the specific activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glucose-6-phosphate isomerase (EC 5.3.1.9) found in the embryos of Bufo bufo during development, it is discussed whether 6-phosphogluconate can accumulate and play a regulative role on glucose-6-phosphate metabolism in the anuran embryo.  相似文献   

10.
The level of hepatic immunoreactive glucose-6-phosphate dehydrogenase protein was found to correlate well with the enzyme activity in adult rats fed the stock laboratory diet in a variety of hormonal conditions. The amount of immunoreactive protein and enzyme activity was 2-fold greater in sexually mature female rats compared with aged matched male animals. However, this difference was absent in diabetic animals, and furthermore although triiodothyronine administration to the diabetic male rat could restore the level of enzyme activity to that of the normoglycaemic animal, it was much less effective in the female animal. In contrast, administration of insulin to the normoglycaemic animal increased the level of glucose-6-phosphate dehydrogenase in the female, but was without effect in the male. These results are discussed in relation to the possible role of thyroid status and steroid sex hormones in the regulation of hepatic glucose-6-phosphate dehydrogenase.  相似文献   

11.
Phenylketonuria is a recessive autosomal disorder that is caused by a deficiency in the activity of phenylalanine-4-hydroxylase, which converts phenylalanine to tyrosine, leading to the accumulation of phenylalanine and its metabolites phenyllactic acid, phenylacetic acid, and phenylpyruvic acid in the blood and tissues of patients. Phenylketonuria is characterized by severe neurological symptoms, but the mechanisms underlying brain damage have not been clarified. Recent studies have shown the involvement of oxidative stress in the neuropathology of hyperphenylalaninemia. Glucose-6-phosphate dehydrogenase plays an important role in antioxidant defense because it is the main source of reduced nicotinamide adenine dinucleotide phosphate (NADPH), providing a reducing power that is essential in protecting cells against oxidative stress. Therefore, the present study investigated the in vitro effect of phenylalanine (0.5, 1, 2.5, and 5?mM) and its metabolites phenyllactic acid, phenylacetic acid, and phenylpyruvic acid (0.2, 0.6, and 1.2?mM) on the activity of enzymes of the pentose phosphate pathway, which is involved in the oxidative phase in rat brain homogenates. 6-Phosphogluconate dehydrogenase activity was not altered by any of the substances tested. Phenylalanine, phenyllactic acid, and phenylacetic acid had no effect on glucose-6-phosphate dehydrogenase activity. Phenylpyruvic acid significantly reduced glucose-6-phosphate dehydrogenase activity without pre-incubation and after 1?h of pre-incubation with the homogenates. The inhibition of glucose-6-phosphate dehydrogenase activity caused by phenylpyruvic acid could elicit an impairment of NADPH production and might eventually alter the cellular redox status. The role of phenylpyruvic acid in the pathophysiological mechanisms of phenylketonuria remains unknown.  相似文献   

12.
Hemolysis in glucose-6-phosphate dehydrogenase deficiency   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
16.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

17.
18.
Molecular mechanism of glucose-6-phosphate dehydrogenase deficiency   总被引:4,自引:0,他引:4  
A Kahn  D Cottreau  P Boivin 《Humangenetik》1974,25(2):101-109
  相似文献   

19.
20.
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase   总被引:3,自引:0,他引:3  
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity and detection of these early changes in a few cells by histochemical means only, enables prediction of other subsequent abnormal metabolic events. Analysis of glucose-6-phosphate dehydrogenase deficiency in erythrocytes has been improved as well by the development of cytochemical tools. Heterozygous deficiency can now be detected in a reliable way. Cell biological studies of development or maturation of various tissues or cells have profited from the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号