首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Salmonella enterica subspecies enterica serovar Typhi is a rod-shaped, Gram-negative, facultatively anaerobic bacterium. It belongs to the family Enterobacteriaceae in the class Gammaproteobacteria, and has the capability of residing in the human gallbladder by forming a biofilm and hence causing the person to become a typhoid carrier. Here we present the complete genome of Salmonella enterica subspecies enterica serotype Typhi strain P-stx-12, which was isolated from a chronic carrier in Varanasi, India. The complete genome comprises a 4,768,352 bp chromosome with a total of 98 RNA genes, 4,691 protein-coding genes and a 181,431 bp plasmid. Genome analysis revealed that the organism is closely related to Salmonella enterica serovar Typhi strain Ty2 and Salmonella enterica serovar Typhi strain CT18, although their genome structure is slightly different.  相似文献   

2.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu, Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.  相似文献   

3.
Salmonella enterica serovar typhimurium translocates a glycerophospholipid:cholesterol acyltransferase (SseJ) into the host cytosol after its entry into mammalian cells. SseJ is recruited to the cytoplasmic face of the host cell phagosome membrane where it is activated upon binding the small GTPase, RhoA. SseJ is regulated similarly to cognate eukaryotic effectors, as only the GTP-bound form of RhoA family members stimulates enzymatic activity. Using NMR and biochemistry, this work demonstrates that SseJ competes effectively with Rhotekin, ROCK, and PKN1 in binding to a similar RhoA surface. The RhoA surface that binds SseJ includes the regulatory switch regions that control activation of mammalian effectors. These data were used to create RhoA mutants with altered SseJ binding and activation. This structure-function analysis supports a model in which SseJ activation occurs predominantly through binding to residues within switch region II. We further defined the nature of the interaction between SseJ and RhoA by constructing SseJ mutants in the RhoA binding surface. These data indicate that SseJ binding to RhoA is required for recruitment of SseJ to the endosomal network and for full Salmonella virulence for inbred susceptible mice, indicating that regulation of SseJ by small GTPases is an important virulence strategy of this bacterial pathogen. The dependence of a bacterial effector on regulation by a mammalian GTPase defines further how intimately host pathogen interactions have coevolved through similar and divergent evolutionary strategies.  相似文献   

4.
Members of Salmonella enterica are important foodborne pathogens of significant public health concern worldwide. This study aimed to determine a range of virulence genes among typhoidal (S. typhi) and non-typhoidal (S. enteritidis) strains isolated from different geographical regions and different years. A total of 87 S. typhi and 94 S. enteritidis strains were tested for presence of 22 virulence genes by employing multiplex PCR and the genetic relatedness of these strains was further characterized by REP-PCR. In S. typhi, invA, prgH, sifA, spiC, sopB, iroN, sitC, misL, pipD, cdtB, and orfL were present in all the strains, while sopE, agfC, agfA, sefC, mgtC, and sefD were present in 98.8, 97.7, 90.8, 87.4, 87.4 and 17.2 %, of the strains, respectively. No lpfA, lpfC, pefA, spvB, or spvC was detected. Meanwhile, in S. enteritidis, 15 genes, agfA, agfC, invA, lpfA, lpfC, sefD, prgH, spiC, sopB, sopE, iroN, sitC, misL, pipD, and orfL were found in all S. enteritidis strains 100 %, followed by sifA and spvC 98.9 %, pefA, spvB and mgtC 97.8 %, and sefC 90.4 %. cdtB was absent from all S. enteritidis strains tested. REP-PCR subtyped S. typhi strains into 18 REP-types and concurred with the virulotyping results in grouping the strains, while in S. enteritidis, REP-PCR subtyped the strains into eight profiles and they were poorly distinguishable between human and animal origins. The study showed that S. typhi and S. enteritidis contain a range of virulence factors associated with pathogenesis. Virulotyping is a rapid screening method to identify and profile virulence genes in Salmonella strains, and improve an understanding of potential risk for human and animal infections.  相似文献   

5.
The Salmonella enterica serovar Typhi CT18 (S.Typhi) chromosome harbours seven distinct prophage-like elements, some of which may encode functional bacteriophages. In silico analyses were used to investigate these regions in S.Typhi CT18, and ultimately compare these integrated bacteriophages against 40 other Salmonella isolates using DNA microarray technology. S.Typhi CT18 contains prophages that show similarity to the lambda, Mu, P2 and P4 bacteriophage families. When compared to other S.Typhi isolates, these elements were generally conserved, supporting a clonal origin of this serovar. However, distinct variation was detected within a broad range of Salmonella serovars; many of the prophage regions are predicted to be specific to S.Typhi. Some of the P2 family prophage analysed have the potential to carry non-essential "cargo" genes within the hyper-variable tail region, an observation that suggests that these bacteriophage may confer a level of specialisation on their host. Lysogenic bacteriophages therefore play a crucial role in the generation of genetic diversity within S.enterica.  相似文献   

6.
In the present study we have presented data on the regulation of LT (leukotriene) and 5-oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) syntheses in human neutrophils upon interaction with OZ (opsonized zymosan) or Salmonella typhimurium. Priming of neutrophils with PMA (phorbol 12-myristate 13-acetate) and LPS (lipopolysaccharide) elicits 5-oxo-ETE formation in neutrophils exposed to OZ, and the addition of AA (arachidonic acid) significantly increases 5-oxo-ETE synthesis. We found that NO (nitric oxide)-releasing compounds induce 5-oxo-ETE synthesis in neutrophils treated with OZ or S. typhimurium. Exposure of neutrophils to zymosan or bacteria in the presence of the NO donor DEA NONOate (1,1-diethyl-2-hydroxy-2-nitroso-hydrazine sodium) considerably increased the conversion of endogenously formed 5-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) to 5-oxo-ETE. To our knowledge, this study is the first to demonstrate that NO is a potent regulator of 5-oxo-ETE synthesis in human polymorphonuclear leucocytes exposed to Salmonella typhimurium and zymosan.  相似文献   

7.
Salmonella enterica subsp. enterica serovar Gallinarum (S. Gallinarum) is the causative agent of fowl typhoid, one of the major causes of mortality and morbidity on poultry farms. Even though it has been substantially eradicated in many developed countries, the disease still remains endemic in Central and South America, in Africa and in the Mediterranean countries of Europe. This leads to the routine screening of flocks, mainly by cultivation and serological techniques, which are expensive, as well as time and labour-consuming. Here we describe a simple and specific PCR-based method for detecting S. Gallinarum. It relies on two seminested PCRs which use four pairs of primers designed on the basis of two genomic regions which appear to be exclusive to the pathogen. Furthermore, an internal positive control was devised in order to avoid any false negative results. We performed sensitivity and specificity tests, and our findings showed the cogency of the system and its potential effectiveness even for routine uses.  相似文献   

8.
Bacterial biofilm formation is an important cause of environmental persistence of food-borne pathogens, such as Salmonella Typhimurium. As the ensemble of bacterial cells within a biofilm represents different physiological states, even for monospecies biofilms, gene expression patterns in these multicellular assemblages show a high degree of heterogeneity. This heterogeneity might mask differential gene expression that occurs only in subpopulations of the entire biofilm population when using methods that average expression output. In an attempt to address this problem and to refine expression analysis in biofilm studies, we used the Differential Fluorescence Induction (DFI) technique to gain more insight in S. Typhimurium biofilm gene expression. Using this single cell approach, we were able to identify 26 genetic loci showing biofilm specific increased expression. For a selected number of identified genes, we confirmed the DFI results by the construction of defined promoter fusions, measurement of relative gene expression levels and construction of mutants. Overall, we have shown for the first time that the DFI technique can be used in biofilm research. The fact that this analysis revealed genes that have not been linked with Salmonella biofilm formation in previous studies using different approaches illustrates that no single technique, in casu biofilm formation, is able to identify all genes related to a given phenotype.  相似文献   

9.
Complement activity in mammalian serum is fundamentally based on three homologous components C3b, C4b and C5. During systemic infection, the gastrointestinal pathogen Salmonella enterica disseminates within host phagocytic cells but also extracellularly. Consequently, systemic Salmonella transiently confronts the complement system. We show here that the surface protease PgtE of S. enterica proteolytically cleaves C3b, C4b and C5 and that the expression of PgtE enhances bacterial resistance to human serum. Degradation of C3b was further enhanced by PgtE-mediated plasminogen activation.  相似文献   

10.
Selection for increased resistance to Salmonella colonisation and excretion could reduce the risk of foodborne Salmonella infection. In order to identify potential loci affecting resistance, differences in resistance were identified between the N and 61 inbred lines and two QTL research performed. In an F2 cross, the animals were inoculated at one week of age with Salmonella enteritidis and cloacal swabs were carried out 4 and 5 wk post inoculation (thereafter called CSW4F2 and CSW4F2) and caecal contamination (CAECF2) was assessed 1 week later. The animals from the (N × 61) × N backcross were inoculated at six weeks of age with Salmonella typhimurium and cloacal swabs were studied from wk 1 to 4 (thereafter called CSW1BC to CSW4BC). A total of 33 F2 and 46 backcross progeny were selectively genotyped for 103 and 135 microsatellite markers respectively. The analysis used least-squares-based and non-parametric interval mapping. Two genome-wise significant QTL were observed on Chromosome 1 for CSW2BC and on Chromosome 2 for CSW4F2, and four suggestive QTL for CSW5F2 on Chromosome 2, for CSW5F2 and CSW2BC on chromosome 5 and for CAECF2 on chromosome 16. These results suggest new regions of interest and the putative role of SAL1.  相似文献   

11.
The duplicate tuf genes on the Salmonella enterica serovar Typhimurium chromosome co-evolve by a RecA-, RecB-dependent gene conversion mechanism. Gene conversion is defined as a non-reciprocal transfer of genetic information. However, in a replicating bacterial chromosome there is a possibility that a reciprocal genetic exchange between different tuf genes sitting on sister chromosomes could result in "apparent" gene conversion. We asked whether the major mechanism of tuf gene conversion was classical or apparent. We devised a genetic selection that allowed us to isolate and examine both expected products from a reciprocal recombination event between the tuf genes. Using this selection we tested within individual cultures for a correlation in the frequency of jackpots as expected if recombination were reciprocal. We found no correlation, either in the frequency of each type of recombinant product, or in the DNA sequences of the products resulting from each recombination event. We conclude that the evidence argues in favor of a non-reciprocal gene conversion mechanism as the basis for tuf gene co-evolution.  相似文献   

12.
Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby strains isolated from different seafood were genotyped by PCR-ribotyping and ERIC-PCR assays. This study has ascertained the genetic relatedness among serovars prevalent in tropical seafood. PCR-ribotyping exhibited genetic variation in both Salmonella serovars, and ribotype profile (II) was most predominant, which was observed in 10/18 of Salmonella enterica subsp. enterica Typhimurium and 7/17 Salmonella enterica subsp. enterica Derby isolates. Cluster analysis of ERIC-PCR for Salmonella enterica subsp. enterica Typhimurium strains exhibited nine different banding patterns and four strains showed >95% genetic homology within the cluster pairs. ERIC-PCR produced more genetic variations in Salmonella enterica subsp. enterica Typhimurium; nevertheless, both methods were found to be comparable for Salmonella enterica subsp. enterica Derby isolates. Discrimination index of PCR-ribotyping for Salmonella enterica subsp. enterica Typhimurium isolates was obtained at 0.674 and index value 0.714 was observed for Salmonella enterica subsp. enterica Derby strains. Molecular fingerprinting investigation highlighted the hypothesis of diverse routes of Salmonella contamination in seafood as multiple clones of Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby were detected in same or different seafood throughout the study period.  相似文献   

13.
373 thirteen-week-old chicks issued from a commercial cross and 312 chickens from the L2 line were intravenously inoculated with 106 Salmonella enteritidis and the numbers of Salmonella in the spleen, liver and genital organs were assessed 3 days later. Heritabilities of the number of Salmonella were estimated at 0.02 ± 0.04 and 0.05 ± 0.05 in the liver; at 0.29 ± 0.07 and 0.10 ± 0.06 in the spleen; and at 0.16 ± 0.05 and 0.11 ± 0.08 in the genital organs, in the first and second experiments, respectively. The difference between the two experiments could result from sampling variations and from differences in the genetic structure of the two populations possibly including both heterosis and additive effects as well as their interaction in the first experiment. Genetic correlations between the number of bacteria in the genital organs and liver (0.56 ± 0.58 and 0.76 ± 0.32 in the first and second experiments, respectively) and spleen (0.37 ± 0.24 and 0.79 ± 0.23) were positive. Moreover a significant within-sire effect of VIL1, a marker gene for NRAMP1, was observed in 117 progeny resulting from 25 informative matings. These results indicate that there are genetic differences in the resistance to visceral infection by S. enteritidis in these commercial egg-laying flocks, and suggest that these differences are at least partly due to genetic polymorphism in the NRAMP1 region.  相似文献   

14.
Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock1. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions.  相似文献   

15.
To compare the effectiveness of culture methods for identifying yak Salmonella, three selective enrichment broths (SC, TTB, MSRV) and three media (SS, XLD, CAS) for detecting Salmonella were evaluated in this study. The results showed that TTB broth was better than SC broths and MSRV broths, and SS medium has the highest isolation rate, significantly higher than those of CAS and XLD media (P < 0.05). It is worth noticing that there was no overlapping of the positive results given by TTB, SC and MSRV broths. In addition, all of the yak Salmonella isolates were detected positive by the five reported PCR assays, targeting the invA, srfC, invE, stn and 16S–23S rRNA genes. The combination of TTB and MSRV broths and SS and CAS media (or XLD) recommended in this study was relatively efficient in recovering Salmonella from yak feces, and the five PCR assays can be successfully used to identify yak Salmonella.  相似文献   

16.
17.
Sensing wetness: a new role for the bacterial flagellum   总被引:17,自引:0,他引:17  
  相似文献   

18.
It has been proposed that sub-inhibitory concentrations of antibiotics play a role in virulence modulation. In this study, we evaluated the ability of Salmonella enterica serovar Typhimurium (hereafter S. Typhimurium) to colonize systemically BALB/c mice after exposure to a sub-inhibitory concentration of cefotaxime (CTX). In vivo competition assays showed a fivefold increase in systemic colonization of CTX-exposed bacteria when compared to untreated bacteria. To identify the molecular mechanisms involved in this phenomenon, we carried out a high-throughput genetic screen. A transposon library of S. Typhimurium mutants was subjected to negative selection in the presence of a sub-inhibitory concentration of CTX and genes related to anaerobic metabolism, biosynthesis of purines, pyrimidines, amino acids and other metabolites were identified as needed to survive in this condition. In addition, an impaired ability for oxygen consumption was observed when bacteria were cultured in the presence of a sub-inhibitory concentration of CTX. Altogether, our data indicate that exposure to sub-lethal concentrations of CTX increases the systemic colonization of S. Typhimurium in BALB/c mice in part by the establishment of a fitness alteration conducive to anaerobic metabolism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号