首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key event in the evolution of maize from teosinte was a reduction in the cupulate fruitcase and softening of the glumes, which increased the accessibility of kernels for harvest. The teosinte glume architecture1 (tga1) locus largely controls this difference between maize and teosinte, and thus may have played a pivotal role in maize evolution. The teosinte allele (tga1+teosinte) lengthens inflorescence internodes, shortens rachillae, and makes glumes longer, thicker, and harder. Developmental characterization of morphometric traits reveals that differences among genotypes are apparent early in female inflorescence development. Increased hardening in glumes homozygous for tga1+teosinte is correlated with a thicker abaxial mesoderm of lignified cells. Silica deposition in the abaxial epidermal cells of the glumes is also affected. In the maize background, glumes homozygous for tga1+teosinte deposit silica in both the short and long cells of the glume epidermis, whereas glumes homozygous for the maize allele (Tga1+Maize) concentrate silica only in the short cells. Silica deposition also appears to be affected by genetic background. The effects of tga1 appear largely to explain the differences in glume induration between maize and teosinte. The diverse pleiotropic effects of tga1 suggest that it is regulatory in nature.  相似文献   

2.
? Hardened floral bracts and modifications to the inflorescence axis of grasses have been hypothesized to protect seeds from predation and/or aid seed dispersal, and have evolved multiple times independently within the family. Previous studies have demonstrated that mutations in the maize (Zea mays ssp. mays) gene teosinte glume architecture (tga1) underlie a reduction in hardened structures, yielding free fruits that are easy to harvest. It remains unclear whether the causative mutation(s) occurred in the cis-regulatory or protein-coding regions of tga1, and whether similar mutations in TGA1-like genes can explain variation in the dispersal unit in related grasses. ? To address these questions TGA1-like genes were cloned and sequenced from a number of grasses and analyzed phylogenetically in relation to morphology; protein expression was investigated by immunolocalization. ? TGA1-like proteins were expressed throughout the spikelet in the early development of all grasses, and throughout the flower of the grass relative Joinvillea. Later in development, expression patterns differed between Tripsacum dactyloides, maize and teosinte (Z. mays ssp. parviglumis). ? These results suggest an ancestral role for TGA1-like genes in early spikelet development, but do not support the hypothesis that TGA1-like genes have been repeatedly modified to affect glume and inflorescence axis diversification.  相似文献   

3.
Understanding which genes contribute to evolutionary change and the nature of the alterations in them are fundamental challenges in evolution. We analyzed regulatory and enzymatic genes in the maize anthocyanin pathway as related to the evolution of anthocyanin-pigmented kernels in maize from colorless kernels of its progenitor, teosinte. Genetic tests indicate that teosinte possesses functional alleles at all enzymatic loci. At two regulatory loci, most teosintes possess alleles that encode functional proteins, but ones that are not expressed during kernel development and not capable of activating anthocyanin biosynthesis there. We investigated nucleotide polymorphism at one of the regulatory loci, c1. Several observations suggest that c1 has not evolved in a strictly neutral manner, including an exceptionally low level of polymorphism and a biased representation of haplotypes in maize. Curiously, sequence data show that most of our teosinte samples possess a promoter element necessary for the activation of the anthocyanin pathway during kernel development, although genetic tests indicate that teosinte c1 alleles are not active during kernel development. Our analyses suggest that the evolution of the purple kernels resulted from changes in cis regulatory elements at regulatory loci and not changes in either regulatory protein function nor the enzymatic loci.  相似文献   

4.
Maize is a major cereal crop worldwide. However, susceptibility to biotrophic pathogens is the primary constraint to increasing productivity. U. maydis is a biotrophic fungal pathogen and the causal agent of corn smut on maize. This disease is responsible for significant yield losses of approximately $1.0 billion annually in the U.S.1 Several methods including crop rotation, fungicide application and seed treatments are currently used to control corn smut2. However, host resistance is the only practical method for managing corn smut. Identification of crop plants including maize, wheat, and rice that are resistant to various biotrophic pathogens has significantly decreased yield losses annually3-5. Therefore, the use of a pathogen inoculation method that efficiently and reproducibly delivers the pathogen in between the plant leaves, would facilitate the rapid identification of maize lines that are resistant to U. maydis. As, a first step toward indentifying maize lines that are resistant to U. maydis, a needle injection inoculation method and a resistance reaction screening method was utilized to inoculate maize, teosinte, and maize x teosinte introgression lines with a U. maydis strain and to select resistant plants.Maize, teosinte and maize x teosinte introgression lines, consisting of about 700 plants, were planted, inoculated with a strain of U. maydis, and screened for resistance. The inoculation and screening methods successfully identified three teosinte lines resistant to U. maydis. Here a detailed needle injection inoculation and resistance reaction screening protocol for maize, teosinte, and maize x teosinte introgression lines is presented. This study demonstrates that needle injection inoculation is an invaluable tool in agriculture that can efficiently deliver U. maydis in between the plant leaves and has provided plant lines that are resistant to U. maydis that can now be combined and tested in breeding programs for improved disease resistance.  相似文献   

5.
6.
Using a quantitative single nucleotide polymorphism (SNP) assay we have investigated the changes in the expression of the BCR-ABL1 oncogene relative to the wild-type ABL1 and BCR alleles in cells from chronic myeloid leukemia (CML) patients not responding to therapy. The results show a progressive increase in the BCR-ABL1 oncogene expression at the expense of decreased expression of the ABL1 allele, not involved in the fusion. No relative changes in the expression of the two BCR alleles were found. These results demonstrate that allele-specific changes in gene expression, with selective, progressive silencing of the wild-type ABL1 allele in favor of the oncogenic BCR-ABL1 allele occur in CML patients with therapy-resistant disease.  相似文献   

7.
Gene expression differences between divergent lineages caused by modification of cis regulatory elements are thought to be important in evolution. We assayed genome-wide cis and trans regulatory differences between maize and its wild progenitor, teosinte, using deep RNA sequencing in F1 hybrid and parent inbred lines for three tissue types (ear, leaf and stem). Pervasive regulatory variation was observed with approximately 70% of ∼17,000 genes showing evidence of regulatory divergence between maize and teosinte. However, many fewer genes (1,079 genes) show consistent cis differences with all sampled maize and teosinte lines. For ∼70% of these 1,079 genes, the cis differences are specific to a single tissue. The number of genes with cis regulatory differences is greatest for ear tissue, which underwent a drastic transformation in form during domestication. As expected from the domestication bottleneck, maize possesses less cis regulatory variation than teosinte with this deficit greatest for genes showing maize-teosinte cis regulatory divergence, suggesting selection on cis regulatory differences during domestication. Consistent with selection on cis regulatory elements, genes with cis effects correlated strongly with genes under positive selection during maize domestication and improvement, while genes with trans regulatory effects did not. We observed a directional bias such that genes with cis differences showed higher expression of the maize allele more often than the teosinte allele, suggesting domestication favored up-regulation of gene expression. Finally, this work documents the cis and trans regulatory changes between maize and teosinte in over 17,000 genes for three tissues.  相似文献   

8.
9.
The GS3 gene was the first identified gene controlling the grain size in rice. It has been proven to be involved in the evolution of grain size during domestication. We isolated the maize ortholog, ZmGS3 and investigated its role in the evolution of maize grain size. ZmGS3 has five exons encoding a protein with 198 amino acids, and has domains in common with the rice GS3 protein. Compared with teosinte, maize has reduced nucleotide diversity at ZmGS3, and the reduction is comparable to that found in neutrally evolving maize genes. No positive selection was detected along the length of the gene using either the Hudson–Kreitman–Aguadé or Tajima’s D tests. Phylogenetic analysis reveals a distribution of maize sequences among two different clades, with one clade including related teosinte sequences. The nucleotide polymorphism analysis, selection test and phylogenetic analysis reveal that ZmGS3 has not been subjected to selection, and appears to be a neutrally evolving gene. In maize, ZmGS3 is primarily expressed in immature ears and kernels, implying a role in maize kernel development. Association mapping analysis revealed one polymorphism in the fifth exon that is significantly associated with kernel length in two environments. Also one polymorphism in the promoter region was found to affect hundred kernel weight in both environments. Collectively, these results imply that ZmGS3 is involved in maize kernel development but with different functional polymorphisms and thus, possibly different mechanisms from that of the rice GS3 gene.  相似文献   

10.
11.
12.
Simple inheritance of key traits distinguishing maize and teosinte   总被引:1,自引:0,他引:1  
The segregation of key traits distinguishing maize and teosinte was analyzed in three F2 and three backcross populations derived from crosses of the modern maize inbred T232 withZea mays ssp.parviglumis. These traits were (i) paired vs. single female spikelets; (ii) two-ranked vs. many-ranked ears; (iii) non-indurated vs. indurated glumes; (iv) inclination of the kernels toward the rachis, and (v) distichous vs. polystichous central staminate spike. All traits showed a simple mode of inheritance except for paired female spikes, which appeared to be controlled by two genes. The loci controlling these major changes were mapped with RFLP markers to four chromosomal regions. These results support the suggestion that maize became differentiated from teosinte with as few as five major gene changes.This paper is dedicated to the memory of Professor Jean Pernes  相似文献   

13.
The evolution of apical dominance in maize during domestication from teosinte is associated with higher expression from the teosinte branched1 (tb1) gene that inhibits tiller bud outgrowth. Unlike many standard maize varieties, the sweet corn inbred P39 that carries a mutation in a starch biosynthesis gene sugary1 produces multiple tillers and providing an opportunity to explore the diversification of the tb1 signal in maize. Through gene expression analysis, we show that tiller buds in P39 continue to grow by overriding the high expression level of tb1 that arrests bud outgrowth in maize inbred B73. In addition, we demonstrate that while B73 is largely non-responsive to shade, both P39 and teosinte respond through tb1-independent and tb1-dependent molecular mechanisms, respectively, leading to inhibition of tiller bud outgrowth.  相似文献   

14.
The arylamine N-acetyltransferase 2 (NAT2) enzymes detoxify a wide range of naturally occurring xenobiotics including carcinogens and drugs. Point mutations in the NAT2 gene result in the variant alleles M1 (NAT2 *5A), M2 (NAT2*6A), M3 (NAT2*7) and M4 (NAT2 *14A) from the wild-type WT (NAT2 *4) allele. The current study was aimed at screening genetic polymorphisms of NAT2 gene in 49 lung cancer patients, 54 colorectal cancer patients and 99 cancer-free controls, using PCR-RFLP. There were significant differences in allele frequencies between lung cancer patients and controls in the WT, M2 and M3 alleles (p < 0.05). However, only M2 and M3 allele frequencies were different between colorectal cancer patients and controls (p < 0.05). There was a marginal significant difference in the distribution of rapid and slow acetylator genotypes between lung cancer patients and controls (p = 0.06 and p = 0.05, respectively), but not between colorectal cancer patients and controls (p = 1.0 and p = 0.95, respectively). Risk of lung cancer development was found to be lower in slow acetylators [odds ratio (OR): 0.51, 95% confidence interval (95% CI): 0.25, 1.02, p-value = 0.07]. No effect was observed in case of colorectal cancer. Our results showed that NAT2 genotypes and phenotypes might be involved in lung cancer but not colorectal cancer susceptibility in Jordan.  相似文献   

15.
16.
17.
The present study determined and compared the genetic diversity of Plasmodium falciparum strains infecting children living in 2 areas from Gabon with different malaria endemicity. Blood samples were collected from febrile children from 2008 to 2009 in 2 health centres from rural (Oyem) and urban (Owendo) areas. Genetic diversity was determined in P. falciparum isolates by analyzing the merozoite surface protein-1 (msp1) gene polymorphism using nested-PCR. Overall, 168 children with mild falciparum malaria were included. K1, Ro33, and Mad20 alleles were found in 110 (65.5%), 94 (55.9%), and 35 (20.8%) isolates, respectively, without difference according to the site (P>0.05). Allelic families’ frequencies were comparable between children less than 5 years old from the 2 sites; while among the older children the proportions of Ro33 and Mad20 alleles were 1.7 to 2.0 fold higher at Oyem. Thirty-three different alleles were detected, 16 (48.5%) were common to both sites, and 10 out of the 17 specific alleles were found at Oyem. Furthermore, multiple infection carriers were frequent at Oyem (57.7% vs 42.2% at Owendo; P=0.04) where the complexity of infection was of 1.88 (±0.95) higher compared to that found at Owendo (1.55±0.75). Extended genetic diversity of P. falciparum strains infecting Gabonese symptomatic children and high multiplicity of infections were observed in rural area. Alleles common to the 2 sites were frequent; the site-specific alleles predominated in the rural area. Such distribution of the alleles should be taken into accounts when designing MSP1 or MSP2 malaria vaccine.  相似文献   

18.
We investigated the natural variations in the flag leaf morphology of rice. We conducted a principal component analysis based on nine flag leaf morphology traits using 103 accessions from the National Institute of Agrobiological Sciences Core Collection. The first component explained 39% of total variance, and the variable with highest loading was the width of the flag leaf (WFL). A genome-wide association analysis of 102 diverse Japanese accessions revealed that marker RM6992 on chromosome 4 was highly associated with WFL. In analyses of progenies derived from a cross between Takanari and Akenohoshi, the most significant quantitative trait locus (QTL) for WFL was in a 10.3-kb region containing the NARROW LEAF 1 (NAL1) gene, located 0.4 Mb downstream of RM6992. Analyses of chromosomal segment substitution lines indicated that a mutation (G1509A single-nucleotide mutation, causing an R233H amino acid substitution in NAL1) was present at the QTL. This explained 13 and 20% of total variability in WFL and the distance between small vascular bundles, respectively. The mutation apparently occurred during rice domestication and spread into japonica, tropical japonica, and indica subgroups. Notably, one accession, Phulba, had a NAL1 allele encoding only the N-terminal, or one-fourth, of the wild-type peptide. Given that the Phulba allele and the histidine-type allele showed essentially the same phenotype, the histidine-type allele was regarded as malfunctional. The phenotypes of transgenic plants varied depending on the ratio of histidine-type alleles to arginine-type alleles, raising the possibility that H233-type products function differently from and compete with R233-type products.  相似文献   

19.
 DNA fingerprinting verified hybrid plants obtained by crossing Eastern gamagrass, Tripsacum dactyloides L., and perennial teosinte, Zea diploperennis Iltis, Doebley & R. Guzmán. Pistillate inflorescences on these hybrids exhibit characteristics intermediate to the key morphological traits that differentiate domesticated maize from its wild relatives: (1) a pair of female spikelets in each cupule; (2) exposed kernels not completely covered by the cupule and outer glumes; (3) a rigid, non-shattering rachis; (4) a polystichous ear. RFLP analysis was employed to investigate the possibility that traits of domesticated maize were derived from hybridization between perennial teosinte and Tripsacum. Southern blots of restriction digested genomic DNA of parent plants, F1, and F2 progeny from two different crosses were probed with RFLP markers specifically associated with changes in pistillate inflorescence architecture that signal maize domestication. Pairwise analysis of restriction patterns showed traits considered missing links in the origin of maize correlate with alleles derived from Tripsacum, and the same alleles are stably inherited in second generation progeny from crosses between Tripsacum and perennial teosinte. Received: 11 October 1996/Accepted:8 November 1996  相似文献   

20.
Dystrobrevin binding protein 1 (DTNBP1) gene is pivotal in regulating the glutamatergic system. Genetic variants of the DTNBP1 affect cognition and thus may be particularly relevant to schizophrenia. We therefore evaluated the association of six single nucleotide polymorphisms (SNPs) with schizophrenia in a Malaysian population (171 cases; 171 controls). Associations between these six SNPs and schizophrenia were tested in two stages. Association signals with p < 0.05 and minor allele frequency > 0.05 in stage 1 were followed by genotyping the SNPs in a replication phase (stage 2). Genotyping was performed with sequenced specific primer (PCR-SSP) and restriction fragment length polymorphism (PCR-RFLP). In our sample, we found significant associations between rs2619522 (allele p = 0.002, OR = 1.902, 95%CI = 1.266 – 2.859; genotype p = 0.002) and rs2619528 (allele p = 0.008, OR = 1.606, 95%CI = 1.130 – 2.281; genotype p = 6.18 × 10−5) and schizophrenia. Given that these two SNPs may be associated with the pathophysiology of schizophrenia, further studies on the other DTNBP1 variants are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号