首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous experiments on the effects of auxins on the geotropicresponses of seedling pea roots (Audus and Brownbridge, 1957)have been extended using the ‘anti-auxin’ -(I-naphthylmethylsulphide)propionicacid (NMSP) alone and in combination with indole-3-acetic acid(IAA) and 2:4-dichlorophenoxyacetic acid (2:4-D). NMSP action differs from that of the auxins in that it reducesthe rate of curvature progressively as the concentration isincreased, irrespective of whether the overall extension growthof the roots is being stimulated (10 and 30 p.p.m.) or inhibited(100 p.p.m.). Correspondingly the reaction time is lengthenedby 25–50 per cent. in all concentrations. Studies of responsesin mixtures of growth-stimulating concentrations of NMSP (30p.p.m.) and growth-inhibiting concentrations of IAA (10–8)and 2:4-D (3 x 10–8) show that auxins and ‘antiauxins’are mutually antagonistic in most, if not all, their actionson growth and curvature. The results suggest that the anti-auxin NMSP may stimulate rootgrowth and inhibit curvature by interfering with the synthesisor distribution of a natural endogenous inhibitor, which isnot IAA. NMSP inhibition of root growth in high concentrationsmust, however, be exerted independently of this natural inhibitor.The mutual antagonisms shown between the auxins and NMSP arebest explained in terms of an interference with access to thegrowth centres; competitive action at the growth centres themselvesseems not to be involved.  相似文献   

2.
Decoated seeds of Clitoria ternatea L. germinated on Murashigeand Skoog (Physiologia Plantarum 1962, 15, 473–97) basalmedium (BM) and differentiated callus and bipolar embryoids(two-step method) in low frequency. Calluses developed on lateralroots [BM+KN(0.1 mg 1–1)], on roots and hypocotyls [BM+KN(0.5mg 1–1)], and on roots [BM+KN+IAA (0.5 mg 1–1 ofeach)]. On basal medium with KN (0.5 mg 1–1) and withKN+IAA (0.5 mg1–1 of each), multiple shoot buds and embryoids(one-step method) were differentiated directly on split hypocotylsand roots. In the former, shoot buds developed even on unsplithypocotyls. Rhizogenesis on isolated shoot buds occurred efficientlyin BM+indole butyric acid (IBA 0.1 mg 1–1) and BM+IAA(0.1 mg 1–1 and 0.5 mg 1–1). Profuse direct embryoidsand shoot buds developing on root systems are interesting morphogeneticphenomena rarely reported. Clitoria ternatea L., callus, embryoids, multiple shoot buds, regeneration  相似文献   

3.
Seeds of Scurrula pulverulenta, a leafy mistletoe, germinatedon a simple nutrient medium, and addition of casein hydrolysate(CH) supported better growth of the seedlings. In either casethe seedlings developed haustoria which were comparable to thehaustoria formed in vivo inside the host tissue. On White'smedium (WM)+CH+indole-3yl-acetic acid (IAA) the embryo callusedand, subsequently, differentiated shoot buds and/or haustoria.On WM+CH+IAA+ kinetin the callused embryo did not differentiatehaustoria or shoot buds. However, on this medium, ‘embryoids’developed up to the heart-shaped stage. The effects of somecytokinins, coconut milk, and water-melon juice, on germination,proliferation of embryo, and differentiation of shoot buds fromthe callus were also studied.  相似文献   

4.
Action patterns of IAA, KIN and GA on the growth of Lemna gibbaG3 are similar to those reported for agents chelating both cupricand ferric ions. Relatively high doses of growth substances,e.g.10–6 M IAA or KIN and –4 M GA, inhibit developmentof photoperiodically induced flower buds and antagonisticallypromote frond multiplication; whereas, at relatively low doses,e.g. 10–9 M IAA or KIN and –5 M GA, they acceleratethe process occurring in the latter half of the induction periodto enhance flower induction. Complex forming abilities of IAA,KIN and GA with cupric and ferric ions are demonstrated spectrophotometrically.Moreover, the ferrous ion-dependent oscillatory change in reproductiveand vegetative photophilies of duckweed is eliminated by KINbut not by IAA and GA. Of the three growth substances tried,KIN alone shows an affinity for ferrous ions. (Received April 5, 1971; )  相似文献   

5.
We used coleoptile sections of Avena sativa, Sorghum bicolor,and Zea mays seedlings to examine interactions between epidermalgrowth factor (EGF) and indole-3-acetic acid (IAA) that mayaffect plant growth and development. Our 24-h bioassays employedthree controls ranging in dilution from 10–4 to 10–8g ml–1: (1) 50 mM potassium-phosphate buffer solution(pH=6.0), (2) bovine serum albumin, a nonspecific protein; and(3) IAA; plus two treatments: (1) mouse epidermal growth factor(EGF) ranging from 10–6 to 10–10gml–1, and(2) EGF + IAA. In all three species growth in IAA, EGF, andEGF + IAA treatments showed significant increases over controls;EGF+IAA showed significant increases in growth over IAA alone.As the concentrations of IAA decreased, the EGF and IAA interactionbecame more pronounced. At the highest IAA concentrations, EGF+ IAA increased growth rates ca. 2% to 39%, whereas at lowerIAA concentrations EGF + IAA promoted growth as much as 121%,thereby lowering the normal IAA physiological set point up tothree or four orders of magnitude. Our data suggest that aninteraction between EGF and IAA may allow plants to recognizeand respond to animal biochemical messengers, resulting in changesin plant cell elongation that ultimately may alter plant growthpatterns. (Received April 27, 1994; Accepted September 5, 1994)  相似文献   

6.
The response of Avena coleoptile sections to high concentrationsof auxin has been determined in the absence of all additivesexcept sucrose. In most experiments the growth-time curves with75 p.p.m. IAA showed two linear phases. In the first phase,which lasted for only 2–4 hours, extension was as rapidwith 75 p.p.m. IAA as with 5 p.p.m. IAA. This rapid initialexpansion phase was then succeeded by a second phase which persistedfor at least 20 hours. During this second linear phase the growth-ratewith 75 p.p.m. IAA was lower than with an auxin concentrationof 5 p.p.m. In some experiments the first phase was absent andonly the second phase was present. The response of sections to high concentrations of auxin wasnot influenced by the presence of buffers or absorbable cations.Omission of sucrose or the presence of moderate amounts of ethanolcaused the resulting growth curves to be non-linear. The rate of uptake of auxin into the tissues was dependent onthe auxin concentration and was constant for at least 24 hours.  相似文献   

7.
Five-mm sections of elongation zones of Zea mesocotyls wereincubated for designated periods with various concentrationsof IAA. In vitro protein phosphorylation in the soluble fraction(85,000 x g supernatant) prepared from the sections was analyzedby sodium dodecyl sulfate-polyacrylamide gel electrophoresis.The phosphorylation of proteins in the soluble fraction thathad been prepared from sections incubated for 20 min in thepresence of 10{small tilde}s M IAA was greater than that inthe sections incubated for 20 min without IAA. The amount ofphosphorylation of proteins per protein became higher when higherconcentrations increased (10{small tilde}8—10{small tilde}5M).The growth of sections incubated in the presence of 10{smalltilde}8 M IAA or higher concentrations was greater than thatof sections incubated in the absence of IAA. The promotion ofgrowth by IAA was greater at higher concentrations of IAA. Proteinsin the soluble fraction, prepared from sections incubated for20 min in the presence of 10{small tilde}5 M IAA, were phosphorylatedin the presence of either 10 fM cAMP, 10 µM cGMP, 100µM W-7, 100 µM W-5, 20 µM H-7 or 20 µMHA1004. The calmodulin antagonist, W-7, and the inhibitor ofprotein kinase C, H-7, inhibited the phosphorylation of proteinsstimulated by incubation with IAA. These results suggest thatIAA promotes cell elongation via protein phosphorylation thatdepends on calmodulin-dependent protein kinase and protein kinaseC. (Received November 29, 1995; Accepted May 20, 1996)  相似文献   

8.
HARTUNG  W.; FUNFER  C. 《Annals of botany》1981,47(3):371-375
Abscisic acid (ABA) applied to the decapitated second internodeof runner bean plants enhanced outgrowth of lateral buds onlywhen internode stumps were no longer elongating. Applied toelongating internodes of slightly younger plants, ABA causesinhibition of bud outgrowth. Together with 10–4 M indol-3-ylacetic acid (IAA), ABA stimulated internode elongation and interactedadditively in the inhibition of bud outgrowth. A mixture of10–5 M ABA and 10–6 M gibberellic acid (GA3 ) causedsimilar effects on internode growth as IAA + ABA, but was mutuallyantagonistic in effect on growth of the lateral buds. Abscisic acid, apical dominance, gibberellic acid, indol-3yl acetic acid, Phaseolus coccineus, bean  相似文献   

9.
Experiments on the interactions of auxins and anti-auxins inroots have been extended to studies with concentrations givinggrowth stimulations using 2-mm. sections excised from the extensionzone of roots of Pisum sativum. The curves relating growth responsesto log10 concentration for ß-indolylacetic acid (IAA)and three anti-auxins, -(I-naphthylmethylsulphide) propionicacid (NMSP), I-naphthylmethylsulphide acetic acid (NMSA), and4-chloro-3-nitrobenzoic acid (CNB), are of very similar shape.A fourth anti-auxin, p-chlorophenoxy-iso butyric acid (PCIB),shows negligible stimulation of growth in any concentration.In multifactorial experiments involving stimulatory concentrationsof IAA (10–4 and 10–5 p.p.m.) with several stimulatoryconcentrations of the first three anti-auxins (NMSP, NMSA, andCNB), consistent mutual antagonisms were clearly demonstrated.PCIB in non-inhibitory concentrations markedly antagonized stimulationby IAA Similar mutual antagonisms were shown in various mixturesof two anti-auxins. Both the similarities of the concentration-response curves andthe consistent mutual antagonisms suggest that both auxins andanti-auxins in stimulating root growth are exerting identicalphysiological actions in the same growth system. On the assumptionthat these substances are active when adsorbed at some enzymeor other protoplasmic surface, it has been demonstrated thatthese experimental results are more easily explained by a directaction at those growth centres than by a competitive antagonismof a natural endogenous growth inhibitor, as suggested in aprevious paper. The bearing of these results on current theories relating auxinand anti-auxin activities to molecular structure is discussed.  相似文献   

10.
Weigela florida variety ‘Bristol Ruby’ has longday requirements for its growth and, in general, for its flowering.Vegetative development, floral initiation and floral organogenesisare described using scanning electron microscopy during photoperiodictreatment in long days, under controlled conditions. Flowering of axillary buds of cuttings has been studied. Theapex of Weigela at the vegetative phase is characterized bya very small hollow meristem. After 9 long days, the meristemenlarges and, after 12 long days, early axillary buds are initiatedin the axils of the leaves, which become bracts. When the numberof long days was increased, flowers were initiated in the budson the induced branches; first at the proximal part of the branchwhere development afterwards slowed down, then on the medianparts of the branch where development was accelerated. Two bracteoles are differentiated soon after floral initiation;first initiation of the calyx required 18 long days. Petals,stamens and ovary were rapidly initiated after that. Weigelaflowers are clustered; the inflorescence ceased growth by abortionof the terminal meristem or by formation of a terminal flower.In axillary buds of the fifth node the formation of the clusterwas completed about 20 days after the beginning of floral induction. Weigela florida ‘Bristol Ruby’, scanning electron microscopic analysis, vegetative meristem, floral development stages, long days induction  相似文献   

11.
The initiation and subsequent development of laticifers werestudied in callus tissues of Calotropis gigantea grown on MS(Murashige and Skoog) medium supplemented with 1 mg l–1IAA. Laticifer development was related to the age of the cultureand could be preserved by repeated subculturing on similar mediumwith IAA. Our previous work had established that cardenolidebiosynthesis was related to rhizogenesis and here we reportthe culture system of laticifer, long term preservation anddifferentiation of this hydrocarbon producing energy plant. Calotropis gigantea, Asclepiadaceae, laticifer, differentiation, cardenolides, tissue culture  相似文献   

12.
Studies were made on the structure of cell walls in Avena coleoptilesegments incubated in sucrose and buffer without IAA (indoleaceticacid), with 8 p.p.m. IAA, and with 8 p.p.m. IAA+o·2 or0·3 M mannitol respectively. Examination in electronand polarizing microscopes revealed no difference in the structureof walls from segments grown in IAA and in IAA+mannitol. Measurementsof the weight of wall material showed that in the presence ofmannitol, wall deposition was inhibited. Measurements on theuptake of oxygen by segments showed that mannitol eliminateda respiratory stimulus produced by IAA. It is suggested thatnew wall material is only deposited on cell walls which arebeing thinned by elongation, and that the respiratory stimulusproduced by IAA and eliminated by mannitol may be in part amanifestation of metabolism involved in the synthesis of newwall material. Wall extension does not appear to be dependenton deposition of new material.  相似文献   

13.
In Torenia stem segments cultured on a defined medium from whichammonium nitrate and growth regulators were omitted, adventitiousbuds were readily formed from epidermal tissue, with subsequentdifferentiation of floral buds. Using this plant material, thecorrelation between the time of application of various chemicalsand the time-course of floral bud differentiation was investigated.Histological examination showed that adventitious buds werevegetative during the first two weeks of the culture, and floralprimordia appeared after about three to four weeks of culture.We divided the flowering process in Torenia stem segments intothe following 3 phases: the first phase (first 2 weeks) duringwhich adventitious buds are formed, the second phase (3rd and4th weeks) during which floral buds are initiated and the thirdphase (5th to 12th weeks) during which floral buds develop.Then we added IAA, zeatin, ammonium nitrate or a high concentrationof sucrose to the medium during one, two or three of these phases.Ammonium nitrate added during the third phase suppressed floralbud development, but the high concentration of sucrose givenduring this phase stimulated it. These two chemicals influencedonly the development of floral buds previously initiated. Theapplication of IAA during the first phase promoted both theinitiation and development of floral buds. However, its applicationafter 2 weeks of culture failed to promote floral bud formation.Zeatin inhibited floral bud formation in a manner similar toammonium nitrate, but if it was added to the medium only duringthe first phase, it slightly promoted the initiation and developmentof floral buds. (Received July 7, 1981; Accepted October 12, 1981)  相似文献   

14.
LUSH  W. M.; EVANS  L. T. 《Annals of botany》1980,46(6):719-725
To test the proposition that photoperiodic controls synchronizethe flowering of cowpeas, Vigna unguiculata (L.) Walp. [V. sinensis(L.) Savi], the day-length requirements for floral initiationand for flowering were investigated in several short-day accessions.No evidence was found of different critical photoperiods atdifferent stages of development, but exposure to only 2–4short days was required for floral initiation compared withabout 20 for development to open flowers. Pod setting was increasedafter exposure to even one short day more than the number requiredfor flower opening. Floral buds at higher nodes appeared to require fewer shortdays for development to flowering than buds at the lower nodes,and displayed faster rates of development. Inflorescence budsdid not resume development if they were exposed to 15 or morelong days following inflorescence initiation. Thus, any tendencytowards synchronous flowering in cowpeas is not due to the criticalday-length for flower development being shorter than that forflower initiation, but could be the result of cumulative photoperiodicinduction of plants and the more rapid development of later-formedflowers. Vigna unguiculata (L.) Walp., cowpeas, flower initiation, flower development, fruit set, photoperiodism  相似文献   

15.
1. Segments, 3.5 mm. long, cut from the first internode of Avenasativa seedlings grown in complete darkness respond to bothauxins and gibberellic acid by accelerated extension. 2. The optimum concentration of indole-3-acetic acid (IAA) is10 p.p.m. and of gibberellic acid (GA) is 0.1 p.p.m. 3. The degree of stimulation relative to the growth of controlsegments is affected by the inclusion in the segement of thenode between the internode and coleoptile. Thus the gibberellineffect is greatly increased while the IAA effect is decreased.The optimal concentrations are not affected by inclusion ofthe node. 4. These results can best be explained in terms of the supplyby the node tissue of an endogenous auxin which is necessaryfor the expression of GA action. 5. Numerous factorial experiments demonstrated that there isno detectable interaction between applied IAA and GA in thepromotion of first-internode extension. This implies that thepostulated endogenous auxin which synergized GAA action in (4)is either an active form of IAA produced only in the node tissueor is a completely different auxin. 6. No synergism of growth-promotive action can be detected betweenGA and the two synthetic auxins I-naphthylacetic acid and 2,4-dichlorophenoxyaceticacid. 7. p-chlorophenoxy-iso-butyric acid (PCIB) anc 2,4,6-trichlorophenoxyaceticacid (2,4,6-T) act as weak auxins and thus antagonize competitivelythe promotive action of GA. 8. The anti-auxin -(I-naphythyl-methyl-sulphide)propionic acid(NMSP) antagonizes competitively the promotive action of bothIAA and GA. 9. The facts under (5)–(8) suggest that auxins and GAare acting at the same growth-promotion centres and may competefor them. 10. Growth inhibitions are induced by high concentrations ofPCIB, 2,4,6-T and NMSP. The inhibitions produced by PCIB and2,4,6-T are both synergized by supra-optimal concentrationsof IAA while that of NMSP is synergized by supra-optimal concentrationsof both IAA and GA. This similarity of the effects of IAA andGA suggests that their inhibition actions also are of a closelysimilar nature.  相似文献   

16.
17.
Flowers were formed in vitro when buds of Satsuma mandarin (Citrusunshiu Mare) from the summer flush of growth harvested duringthe winter rest period before the onset of flower initiation,were grown on a solid Murashige and Skoog medium supplementedwith sucrose and a cytokinin. Flower development was dependentupon illumination, and was enhanced when a piece of stem wasattached to the bud. The percentage of flowering explants wasalways lower than the percentage of naturally flowering budsin spring, but treatments such as ringing which increase floweringin vitro, increased the number of explants flowering int vitroas well. Citrus unshiu Marc, ‘Satsuma’ mandarin, in vitro flowering, ringing  相似文献   

18.
DALESSANDRO  G. 《Annals of botany》1973,37(2):375-382
The time course of xylem differentiation was determined in explantsof lettuce pith parenchyma (Lactuca sativa L. cv. Romana) culturedon Murashige and Skoog (1962) medium using different concentrationsof auxin (IAA) and one cytokinin (zeatin or kinetin). Increasinglevels of auxin from I mg 1–1 to 15 mg 1–1 in thepresence of a constant level of a cytokinin (zeatin or kinetin)yielded up to 10 mg 1–1 IAA, an increase in the numberof tracheary element formations. Cytokinin concentrations aboveand below o.1 mg 1–1 interacting with an optimal xylogenicamount of auxin inhibited xylogenesis. The IAA (10 mg 1–1)-zeatin(0.1 mg 1–1) treatment produced the greatest number oftracheids, while kinetin compared to zeatin did not producesuch an effect. The different effectiveness of zeatin and kinetinin inducing tracheary element formations was not due to a differentcapacity of the two cytokinins to stimulate cell division butit seems likely that zeatin, because of interaction with IAA,is more active than kinetin in the determination of the dividingcells in a specific type of cytodifferentiation. The IAA (10mg 1–1)-zeatin (0.1 mg 1–1) treatment produced about6.9 per cent tracheids with respect to cell division while IAA(10 mg 1–1)-kinetin (0.1 mg 1–1) produced 4.2 percent. These results are discussed with reference to the problemsof hormonal control of xylem differentiation.  相似文献   

19.
In Gibberella fujikuroi and Penicillium notatum, IAA, 2,4-Dand GA3 promoted conidial germination and the elongation ofyoung hyphae. The promotive effects of IAA and GA3 were additive.In both fungi, the concentrations of endogenous auxin and gibberellinin the culture media were 10–10 to 610–12M. (Received April 27, 1985; Accepted August 12, 1985)  相似文献   

20.
Bud differentiation by direct organogenesis at the apical endof Troyer citrange (Citrus sinensis[L]. OsbeckxPoncirus trifoliata[L].Raf.) epicotyl cuttings inserted vertically in a semi-solidculture medium did not require hormone additions. The numberof buds regenerated was slightly, but significantly, increasedwhen the incubation was performed in the light as compared tothe dark, and by the addition of benzyladenine (BA; 2.2 to 22µM) to the medium. Bud sprouting and subsequent shootformation required the addition of BA and was increased by lightto a higher extent than bud formation. The best response wasobtained with the highest BA concentration tested (22 µM).Regeneration through the indirect organogenic pathway at thetwo edges of the epicotyl cuttings when in contact with theculture medium did not occur in the absence of benzyladenine,which was an absolute requirement for callus development. Thebest regeneration response was obtained when the explants wereincubated in the light in the presence of 4.4 µM BA andan auxin. Indole-3-acetic acid (IAA; 5.8 µM) was moreeffective in increasing shoot formation than naphthaleneaceticacid (NAA; 0.54 µM). Higher NAA concentrations inhibitedshoot formation. Incubation in the dark or increasing the BAconcentration (22 µM) increased markedly callus growth,but inhibited both bud differentiation and sprouting, almostcompletely suppressing shoot formation. The conditions duringregeneration affected the rooting of the regenerated shoots.Rooting of 86% of the shoots was achieved in a medium with 2.7µM NAA and 2.6 µM indole-3-butyric acid. All therooted explants acclimated and survived transplanting. Underthe optimal conditions tested, the proliferation rate obtainedthrough the indirect regeneration pathway ranged from 60 to86 plants per seedling. Copyright 2000 Annals of Botany Company Troyer citrange, Citrus sinensisxPoncirus trifoliata, auxins, benzyladenine, direct organogenesis, hormone requirement, indirect organogenesis, light, morphogenesis, rooting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号