首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate of about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32–95 Hz. When the rats were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface (where induced fields were maximal). Within the body, or in different directions relative to the applied field, the induced fields were reduced (reaching zero at the center of the animal). The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals. Bioelectromagnetics 18:317–323, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Drosophila flies placed in a habitat with two lateral boxes demonstrated sensitivity to magnetic fields: Oviposition decreased by exposure to pulsated extremely low frequency (ELF) (100)Hz, 1.76 miliTesla (mT) and sinusosidal fields (50 Hz, 1 mT), while there was no initial effect of exposure to a static magnetic field (4.5 mT). Drosophila eggs treated for 48 h with the above described fields showed that (1) mortality of eggs was lower in controls than in eggs exposed to all tested magnetic fields; (2) mortality of larvae increased when a permanent magnet was used; (3) mortality of pupae was highest when a permanent magnet was used; and (4) general adult viability was highest in controls (67%) and diminished progressively when eggs were exposed to pulsated (55%), sinusoidal (45%), and static (35%) magnetic fields.  相似文献   

3.
工频磁场是人类生活中接触最多的一类磁场,其引起的生物效应与人类健康的关系备受关注.本文选用1 mT、5 mT及10 mT工频磁场照射急性分离的小鼠皮层神经元(15 min),应用全细胞膜片钳技术离线记录通道电流,研究了工频磁场对神经元延迟整流钾通道特性的影响.结果显示,1 mT、5 mT及10 mT 3个强度的工频磁场对Ik均有抑制作用,但随着去极化电压的增加,发现1 mT和5 mT工频磁场的抑制率几乎不变,抑制率分别为(30 ± 4.2)%和(20 ± 2.2)%,而10 mT工频磁场的抑制率增加,最大抑制率为43.4%.另外,1 mT和5 mT工频磁场影响了延迟整流钾通道的激活特性,通道的半数激活电压变大,斜率因子不变.而10 mT工频磁场对通道的激活特性没有影响,半数激活电压和斜率因子均不改变.研究表明,工频磁场可能影响了细胞膜上离子通道蛋白质的结构和功能,并且不同强度工频磁场对通道的影响不同,存在强度窗口效应.  相似文献   

4.
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
A controlled pilot study was performed to examine the possibility of finding a specific electromagnetic field signal to inhibit angiogenesis during tumor growth. A 120 Hz pulsating magnetic field of 4 and 5 mT was applied to female mice which had been inoculated with murine 16/C mammary adenocarcinoma. After 11 consecutive sessions of 10 min/day exposure to the magnetic field, the animals were sacrificed and an immunohistochemistry analysis of the tumors was performed. CD31 staining indicated that both magnetic fields significantly reduced the vasculature in the tumors: 39% at 4 mT magnetic flux density and 53% at 5 mT. The positive implications for impeding tumor growth and metastasis warrant further studies.  相似文献   

6.
Direct current-generated magnetic fields (2-3 mT, 20-min exposure) exerted biphasic effects on the population spike recorded from hippocampal slices. The initial decrease in the potential, observed during exposure of the slices to magnetic fields was followed by a recovery/amplification phase, which began after terminating the magnetic field action. During that phase the population spike exceeded the amplitude observed before application of the magnetic fields. The pattern of magnetic fields influence was not affected either by (+)-5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5, 10-imine maleate (MK801), or by D,L,-2amino-5phosphonovalerate (APV), a noncompetitive and competitive NMDA receptor antagonist, respectively. The rising phase of the potential, however, was eliminated by dantrolene, an inhibitor of intracellular Ca(2 +) channels. This suggests that intracellular calcium channels participate in the mechanism of the influence of the direct current magnetic fields on the function of the hippocampal tissue.  相似文献   

7.
The purpose of this in vitro study was to assess the potential influence of low frequency, low intensity magnetic fields (rectangular pulse, 5 mT, 30 Hz) applied in therapy on the temperature, contact electric potential, and magnetization in knee endoprosthesis, which might be dangerous for implantation and stability of knee prosthesis, and later slacking it off, causing postoperative complications. The experimental investigation was carried out on a knee endoprosthesis which had been placed in a container with physiological saline. The prosthesis located inside the container was under the exposure of the magnetic field applied by a solenoid. The results indicated that magnetic fields did not influence thermal and electromagnetic properties of knee endoprosthesis in vitro. The magnetic fields of examined parameters should not be dangerous for implantation and stability of knee endoprosthesis. Bioelectromagnetics 30:159–162, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
The effects of exposure to static (1–100 mT) or sinusoidal (1 Hz, 1.6 mT) magnetic fields on the production of nitric oxide (NO) by murine BCG-activated macrophages were investigated. In these cells, the inducible isoform of NO synthase is present. No significant differences were observed in nitrite levels among exposed, sham-exposed, or control macrophages after exposure for 14 h to static fields of 1, 10, 50, and 100 mT and to sinusoidal 1.6 mT, 1 Hz magnetic fields. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Experiments designed to evaluate the synergistic production of clastogenic effects by ionizing radiation and 60 Hz magnetic fields were performed using human lymphocytes from peripheral blood. Following exposure to ionizing radiation, cells were cultured in 60 Hz magnetic fields having field strengths up to 1.4 mT. Cells exposed to both ionizing radiation and 60 Hz magnetic fields demonstrated an enhanced frequency of near tetraploid chromosome complements, a feature not observed following exposure to only ionizing radiation. The results are discussed in the context of a multiple-stage model of cellular transformation, employing both initiating and promoting agents. © 1993 Wiley-Liss. Inc.  相似文献   

10.
The influence of pulsed magnetic fields (PMFs) on nonsynaptic potentials recorded from the central and peripheral nervous system in vitro has been investigated. The population spikes (PSs) recorded from hippocampal slices during antidromic stimulation and compound action potentials (CAPs) recorded from the segments of the sciatic nerve were used as indicators of neuronal activity. The potentials recorded from both preparations were significantly and permanently enhanced following PMF (0.16 Hz, 15 mT) exposure. The increase in the antidromic PS occurred even in the presence of potassium channel blocker tetraethylammonium (TEA) and was accompanied by multiple spiking. Among all frequencies of PMF tested (0.5, 0.16, 0.07, 0.03, 0.0 Hz), the frequency of 0.5 Hz was the most effective in enhancement of potential amplitude. The influence of PMF on the amplitude of two CAPs evoked by the pair of electrical stimuli applied in rapid succession has also been evaluated. In control conditions the potential triggered by the second stimuli was slightly smaller expressing the phenomenon of short‐term depression (STD). Although PMF exposure amplified the amplitude of both potentials, the increase in the size of the first potential was significantly greater increasing further the magnitude of STD. The blocking of potassium channels reversed STD into facilitation. One of the possible mechanisms involved in PMF action could be the modification of the axonal threshold, which was significantly reduced following exposure to PMF. Bioelectromagnetics 30:621–630, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Pregnant CD1 mice were exposed or sham-exposed from day 0 to day 17 of gestation to a 50 Hz sinusoidal magnetic field at 20 mT (rms). Preimplantation and postimplantation survival were assessed and fetuses examined for the presence of gross external, internal, and skeletal abnormalities. There were no statistically significant field-dependent effects on preimplantation or postimplantation survival, sex ratio, or the incidence of fetuses with internal or skeletal abnormalities. Magnetic field exposure was, however, associated with longer and heavier fetuses at term, with fewer external abnormalities. The results lend no support to suggestions of increased rates of spontaneous abortion or congenital malformation following prenatal exposure to power frequency magnetic fields. © 1994 Wiley-Liss, Inc.  相似文献   

12.
It is widely accepted that moderate levels of nonionizing electric or magnetic fields, for example 50/60 Hz magnetic fields of about 1 mT, are not mutagenic. However, it is not known whether such fields can enhance the action of known mutagens. To explore this question, a stringent experimental protocol, which included blinding and systematic negative controls, was implemented, minimizing the possibility of observer bias or experimental artifacts. As a model system, we chose to measure mutation frequencies induced by 2 Gy gamma rays in the redox-sensitive hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in Chinese hamster ovary cells. We tested whether a 12-h exposure to a 60 Hz sinusoidally oscillating magnetic-flux density (Brms = 0.7 mT) could affect the mutagenic effects of ionizing radiation on the HPRT gene locus. We determined that the magnetic-field exposure induced an approximate 1.8-fold increase in HPRT mutation frequency. Additional experiments at Brms = 0.23 and 0.47 mT revealed that the effect was reduced at lower flux densities. The field exposure did not enhance radiation-induced cytotoxicity or mutation frequencies in cells not exposed to ionizing radiation. These results suggest that moderate-strength, oscillating magnetic fields may act as an enhancer of mutagenesis in mammalian cells.  相似文献   

13.
The effects of static and 50 Hz magnetic fields on cytochrome-C oxidase activity were investigated in vitro by strictly controlled, simultaneous polarographic measurements of the enzyme's high- and low-affinity redox reaction. Cytochrome-C oxidase was isolated from beef heart. Control experiments were carried out in the ambient geomagnetic and 50 Hz magnetic fields at respective flux densities of 45 and 1.8 μT. The experimentally applied fields, static and time-varying, were generated by Helmholtz coils at flux densities between 50 μT and 100 mT. Exposures were timed to act either on the combined enzyme-substrate interchange or directly on the enzyme's electron and proton translo-cations. Significant changes as high as 90% of the overall cytochrome-C oxidase activity resulted during exposure (1) to a static magnetic field at 300 μT or 10 mT in the high-affinity range, and (2) to a 50 Hz magnetic field at 10 or 50 mT in the low-affinity range. No changes were observed at other flux densities. After exposure to a change-inducing, static or time-varying field, normal activity returned. © 1993 Wiley-Liss. Inc.  相似文献   

14.
The aim of this study was to investigate the effects of 50 Hz magnetic fields (0.2–0.5 mT) on rabbit red blood cells (RBCs) that were exposed simultaneously to the action of an oxygen radical-generating system, Fe(II)/ascorbate. Previous data obtained in our laboratory showed that the exposure of rabbit erythrocytes or reticulocytes to Fe(II)/ascorbate induces hexokinase inactivation, whereas the other glycolytic enzymes do not show any decay. We also observed depletion of reduced glutathione (GSH) content with a concomitant intracellular and extracellular increase in oxidized glutathione (GSSG) and a decrease in energy charge. In this work we investigated whether 50 Hz magnetic fields could influence the intracellular impairments that occur when erythrocytes or reticulocytes are exposed to this oxidant system, namely, inactivation of hexokinase activity, GSH depletion, a change in energy charge, and hemoglobin oxidation. The results obtained indicate that a 0.5 mT magnetic field had no effect on intact RBCs, whereas it increased the damage in an oxidatively stressed erythrocyte system. In fact, exposure of intact erythrocytes incubated with Fe(II)/ascorbate to a 0.5 mT magnetic field induced a significant further decay in hexokinase activity (about 20%) as well as a twofold increase in methemoglobin production compared with RBCs that were exposed to the oxidant system alone. Although further studies will be needed to determine the physiological implications of these data, the results reported in this study demonstrate that the effects of the magnetic fields investigated are able to potentiate the cellular damage induced in vitro by oxidizing agents. Bioelectromagnetics 18:125–131, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Electromagnetic fields (EMFs) have emerged as a versatile means for osteoporosis treatment and prevention. However, its optimal application parameters are still elusive. Here, we optimized the frequency parameter first by cell culture screening and then by animal experiment validation. Osteoblasts isolated from newborn rats (ROBs) were exposed 90 min/day to 1.8 mT SEMFs at different frequencies (ranging from 10 to 100 Hz, interval of 10 Hz). SEMFs of 1.8 mT inhibited ROB proliferation at 30, 40, 50, 60 Hz, but increased proliferation at 10, 70, 80 Hz. SEMFs of 10, 50, and 70 Hz promoted ROB osteogenic differentiation and mineralization as shown by alkaline phosphatase (ALP) activity, calcium content, and osteogenesis-related molecule expression analyses, with 50 Hz showing greater effects than 10 and 70 Hz. Treatment of young rats with 1.8 mT SEMFs at 10, 50, or 100 Hz for 2 months significantly increased whole-body bone mineral density (BMD) and femur microarchitecture, with the 50 Hz group showing the greatest effect. Furthermore, 1.8 mT SEMFs extended primary cilia lengths of ROBs and increased protein kinase A (PKA) activation also in a frequency-dependent manner, again with 50 Hz SEMFs showing the greatest effect. Pretreatment of ROBs with the PKA inhibitor KT5720 abolished the effects of SEMFs to increase primary cilia length and promote osteogenic differentiation/mineralization. These results indicate that 1.8 mT SEMFs have a frequency window effect in promoting osteogenic differentiation/mineralization in ROBs and bone formation in growing rats, which involve osteoblast primary cilia length extension and PKA activation.  相似文献   

16.
Some effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human spermatozoa are reported. Significant increases in the values of the motility and of the other kinematic parameters have been observed when spermatozoa were exposed to an ELF-EMF with a square waveform of 5 mT amplitude and frequency of 50 Hz. By contrast, a 5 mT sine wave (50 Hz) and a 2.5 mT square wave (50 Hz) exposure did not produce any significant effect on sperm motility. The effects induced by ELF-EMF (50 Hz; 5 mT) during the first 3 h of exposure persisted for 21 h after the end of the treatment. These results indicate that ELF-EMF exposure can improve spermatozoa motility and that this effect depends on the field characteristics.  相似文献   

17.
A study of the influence of electromagnetic fields (EMF) of various frequencies, from 50 up to 400 Hz, on the catalytic activity of soluble and insoluble horseradish peroxidase (POD) was carried out. To simulate the conditions in which the enzyme operates in vivo, the POD was immobilized by entrapment on a gelatin membrane or by covalent attachment on a nylon graft membrane. The rate of inactivation of the soluble POD was found to exhibit positive and negative interactions with the 1 mT applied magnetic field, with an optimum positive effect at 130 Hz. The immobilized PODs, on the contrary, do not exhibit negative interactions, but show a maximum positive interaction at 150 Hz when entrapped and at 170 Hz when covalently attached. At 50 Hz and at frequencies higher than 250 Hz no effects were observed with insoluble POD. The optimum frequency of positive interaction between the EMF and the catalytic activity of the insoluble enzymes is shifted with respect to that of the soluble enzymes towards higher frequencies, the size of the shifts being dependent on the intensity of the physical forces involved in the immobilization process.  相似文献   

18.
Two groups of SENCAR mice were treated with a single dose of carcinogen and then, for 23 weeks, with a chemical tumor promoter to induce skin tumors. During this period, one group was coexposed to a 2 mT power frequency (60 Hz) magnetic field, while the other was exposed to sham conditions. Application of the tumor promoter ceased after 23 weeks, but the exposure to sham conditions or magnetic fields continued for an additional 29 weeks. No difference was found between the two groups of mice in terms of the incidence of total tumors (P =.297) or squamous cell carcinomas (SSC) (P =.501). In summary, there was no evidence to support the hypotheses that 60 Hz magnetic fields (MF) can influence the development of either papillomas or SSC under our defined experimental conditions. The overall results add to previous animal studies that find no association between exposure to 60 Hz MF and the incidence of benign or malignant tumors.  相似文献   

19.
Intense magnetic fields have been shown to affect memory-related behaviours of rodents. A series of experiments was performed to investigate further the effects of a 50 Hz magnetic field on the foraging behaviour of adult, male C57BL/6J mice performing a spatial learning task in an eight-arm radial maze. Exposure to vertical, sinusoidal magnetic fields between 7.5 μT and 7.5 mT for 45 min immediately before daily testing sessions caused transient decreases in performance that depended on the applied flux density. Exposure above a threshold of between 7.5 and 75 μT significantly increased the number of errors the animals made and reduced the rate of acquisition of the task without any effect on overall accuracy. However, the imposition of a 45-minute delay between exposure at 0.75 mT and behavioural testing resulted in the elimination of any deficit. Similarly, exposure to fields between 7.5 μT and 0.75 mT for 45 min each day for 4 days after training had no amnesic effects on the retention and subsequent performance of the task. Overall, these results provide additional evidence that 50 Hz magnetic fields may cause subtle changes in the processing of spatial information in mice. Although these effects appear dependent on field strength, even at high flux densities the field-induced deficits tend to be transient and reversible. Bioelectromagnetics 19:486–493, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
B R Sastry  J W Goh 《Life sciences》1984,34(15):1497-1501
In transversely sectioned rat hippocampal slices, the effects of low (20 Hz, 600 pulses) and high (400 Hz, 200 pulses) frequency tetani of Schaffer collaterals were examined on the CA1 population spike as well as on the binding of 3H-glutamate. The population spike was suppressed while 3H-glutamate binding greatly enhanced following a low frequency tetanus. Verapamil (1 micron), which does not block long-lasting potentiation (LLP), counteracted the depression of the population spike as well as the associated increase in 3H-glutamate binding. The high frequency tetanus induced LLP of the population spike but caused no change in the amino acid binding. These results indicate that the increase in the number of glutamate receptors is not a requirement for LLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号