首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim HE  Jiang X  Du F  Wang X 《Molecular cell》2008,30(2):239-247
During apoptosis, cytochrome c is released from mitochondria to the cytosol, where it binds Apaf-1. The Apaf-1/cytochrome c complex then oligomerizes either into heptameric caspase-9-activating apoptosome, which subsequently activates caspase-3 and caspase-7, or bigger inactive aggregates, depending on the availability of nucleotide dATP/ATP. A tumor suppressor protein, PHAPI, enhances caspase-9 activation by promoting apoptosome formation through an unknown mechanism. We report here the identification of cellular apoptosis susceptibility protein (CAS) and heat shock protein 70 (Hsp70) as mediators of PHAPI activity. PHAPI, CAS, and Hsp70 function together to accelerate nucleotide exchange on Apaf-1 and prevent inactive Apaf-1/cytochrome c aggregation. CAS expression is induced by multiple apoptotic stimuli including UV irradiation. Knockdown of CAS by RNA interference (RNAi) in cells attenuates apoptosis induced by UV light and causes endogenous Apaf-1 to form aggregates. These studies indicated that PHAPI, CAS, and Hsp70 play an important regulatory role during apoptosis.  相似文献   

2.
The cellular-stress response can mediate cellular protection through expression of heat-shock protein (Hsp) 70, which can interfere with the process of apoptotic cell death. Stress-induced apoptosis proceeds through a defined biochemical process that involves cytochrome c, Apaf-1 and caspase proteases. Here we show, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers. Hsp70 binds to Apaf-1 but not to procaspase-9, and prevents recruitment of caspases to the apoptosome complex. Hsp70 therefore suppresses apoptosis by directly associating with Apaf-1 and blocking the assembly of a functional apoptosome.  相似文献   

3.
Hsp70 and Hsp90 protein chaperones cooperate in a protein-folding pathway required by many "client" proteins. The co-chaperone Sti1p coordinates functions of Hsp70 and Hsp90 in this pathway. Sti1p has three tetratricopeptide repeat (TPR) domains. TPR1 binds Hsp70, TPR2a binds Hsp90, and the ligand for TPR2b is unknown. Although Sti1p is thought to be dedicated to the client folding pathway, we earlier showed that Sti1p regulated Hsp70, independently of Hsp90, in a way that impairs yeast [PSI+] prion propagation. Using this prion system to monitor Sti1p regulation of Hsp70 and an Hsp90-inhibiting compound to monitor Hsp90 regulation, we identified Sti1p mutations that separately affect Hsp70 and Hsp90. TPR1 mutations impaired Sti1p regulation of Hsp70, but deletion of TPR2a and TPR2b did not. Conversely, TPR2a and TPR2b mutations impaired Sti1p regulation of Hsp90, but deletion of TPR1 did not. All Sti1p mutations variously impaired the client folding pathway, which requires both Hsp70 and Hsp90. Thus, Sti1p regulated Hsp70 and Hsp90 separately, Hsp90 is implicated as a TPR2b ligand, and mutations separately affecting regulation of either chaperone impair a pathway that is dependent upon both. We further demonstrate that client folding depended upon bridging of Hsp70 and Hsp90 by Sti1p and find conservation of the independent regulation of Hsp70 and Hsp90 by human Hop1.  相似文献   

4.
5.
Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP   总被引:8,自引:0,他引:8  
The apoptosome is a multiprotein complex comprising Apaf-1, cytochrome c, and caspase-9 that functions to activate caspase-3 downstream of mitochondria in response to apoptotic signals. Binding of cytochrome c and dATP to Apaf-1 in the cytosol leads to the assembly of a heptameric complex in which each Apaf-1 subunit is bound noncovalently to a procaspase-9 subunit via their respective CARD domains. Assembly of the apoptosome results in the proteolytic cleavage of procaspase-9 at the cleavage site PEPD(315) to yield the large (p35) and small (p12) caspase-9 subunits. In addition to the PEPD site, caspase-9 contains a caspase-3 cleavage site (DQLD(330)), which when cleaved, produces a smaller p10 subunit in which the NH(2)-terminal 15 amino acids of p12, including the XIAP BIR3 binding motif, are removed. Using purified proteins in a reconstituted reaction in vitro, we have assessed the relative impact of Asp(315) and Asp(330) cleavage on caspase-9 activity within the apoptosome. In addition, we characterized the effect of caspase-3 feedback cleavage of caspase-9 on the rate of caspase-3 activation, and the potential ramifications of Asp(330) cleavage on XIAP-mediated inhibition of the apoptosome. We have found that cleavage of procaspase-9 at Asp(330) to generate p35, p10 or p37, p10 forms resulted in a significant increase (up to 8-fold) in apoptosome activity compared with p35/p12. The significance of this increase was demonstrated by the near complete loss of apoptosome-mediated caspase-3 activity when a point mutant (D330A) of procaspase-9 was substituted for wild-type procaspase-9 in the apoptosome. In addition, cleavage at Asp(330) exposed a novel p10 NH(2)-terminal peptide motif (AISS) that retained the ability to mediate XIAP inhibition of caspase-9. Thus, whereas feedback cleavage of caspase-9 by caspase-3 significantly increases the activity of the apoptosome, it does little to attenuate its sensitivity to inhibition by XIAP.  相似文献   

6.
Bao Q  Lu W  Rabinowitz JD  Shi Y 《Molecular cell》2007,25(2):181-192
Apaf-1 plays an essential role in apoptosis. In the presence of cytochrome c and dATP, Apaf-1 assembles into an oligomeric apoptosome, which is responsible for the activation of procaspase-9 and the maintenance of the enzymatic activity of the processed caspase-9. Regulation of apoptosome assembly by other cellular factors is poorly understood. Here we report that physiological concentrations of calcium ion negatively affect the assembly of apoptosome by inhibiting nucleotide exchange in the monomeric, autoinhibited Apaf-1 protein. Consequently, calcium blocks the ability of Apaf-1 to activate caspase-9. These observations suggest an important role of calcium homeostasis on the Apaf-1-dependent apoptotic pathway.  相似文献   

7.
The Apaf-1 apoptosome: a large caspase-activating complex   总被引:19,自引:0,他引:19  
Cain K  Bratton SB  Cohen GM 《Biochimie》2002,84(2-3):203-214
It is increasingly recognized that many key biological processes, including apoptosis, are carried out within very large multi-protein complexes. Apoptosis can be initiated by activation of death receptors or perturbation of the mitochondria causing the release of apoptogenic proteins, which result in the activation of caspases which are responsible for most of the biochemical and morphological changes observed during apoptosis. Caspases are normally inactive and require proteolytic processing for activity and this is achieved by the formation of large protein complexes known as the DISC (death inducing signalling complex) and the apoptosome. In the case of the latter complex, the central scaffold protein is a mammalian CED-4 homologue known as Apaf-1. This is an approximately 130 kDa protein, which in the presence of cytochrome c and dATP oligomerizes to form a very large (approximately 700-1400 kDa) apoptosome complex. The apoptosome recruits and processes caspase-9 to form a holoenzyme complex, which in turn recruits and activates the effector caspases. The apoptosome has been described in cells undergoing apoptosis, in dATP activated cell lysates and in reconstitution studies with recombinant proteins. Recent studies show that formation and function of the apoptosome can be regulated by a variety of factors including intracellular levels of K(+), inhibitor of apoptosis proteins (IAPs), heat shock proteins and Smac/Diablo. These various factors thus ensure that the apoptosome complex is only fully assembled and functional when the cell is irrevocably destined to die.  相似文献   

8.
Cardiomyocyte apoptosis contributes to cell death during myocardial infarction. One of the factors that regulate the degree of apoptosis during ischemia is the amino acid taurine. To study the mechanism underlying the beneficial effect of taurine, we examined the interaction between taurine and mitochondria-mediated apoptosis using a simulated ischemia model with cultured rat neonatal cardiomyocytes sealed in closed flasks. Exposure to medium containing 20 mM taurine reduced the degree of apoptosis following periods of ischemia varying from 24 to 72 h. In the untreated group, simulated ischemia for 24 h led to mitochondrial depolarization accompanied by cytochrome c release. The apoptotic cascade was also activated, as evidenced by the activation of caspase-9 and -3. Taurine treatment had no effect on mitochondrial membrane potential and cytochrome c release; however, it inhibited ischemia-induced cleavage of caspase-9 and -3. Taurine loading also suppressed the formation of the Apaf-1/caspase-9 apoptosome and the interaction of caspase-9 with Apaf-1. These findings demonstrate that taurine effectively prevents myocardial ischemia-induced apoptosis by inhibiting the assembly of the Apaf-1/caspase-9 apoptosome. ischemia; cultured cardiomyocytes  相似文献   

9.
The Drosophila Apaf-1 related killer (Dark) forms an apoptosome that activates Dronc, an apical procaspase in the intrinsic cell death pathway. To study this process, we assembled a large Dark complex in the presence of dATP. Remarkably, we found that cytochrome c was not required for assembly and when added, cytochrome c did not bind to the Dark complex. We then determined a 3D structure of the Dark complex at 18.8A resolution using electron cryo-microscopy and single particle methods. In the structure, eight Dark subunits form a wheel-like particle and two of these rings associate face-to-face. In contrast, Apaf-1 forms a single ring that is comprised of seven subunits and each Apaf-1 binds a molecule of cytochrome c. We then used relevant crystal structures to model the Dark complex. This analysis shows that a single Dark ring and the Apaf-1 apoptosome share many key features. When taken together, the data suggest that a single ring in the Dark complex may represent the Drosophila apoptosome. Thus, our analysis provides a domain model of this complex and gives insights into its function.  相似文献   

10.
Mechanisms for regulation of Hsp70 function by Hsp40   总被引:9,自引:0,他引:9       下载免费PDF全文
The Hsp70 family members play an essential role in cellular protein metabolism by acting as polypeptide-binding and release factors that interact with nonnative regions of proteins at different stages of their life cycles. Hsp40 cochaperone proteins regulate complex formation between Hsp70 and client proteins. Herein, literature is reviewed that describes the mechanisms by which Hsp40 proteins interact with Hsp70 to specify its cellular functions.  相似文献   

11.
Vertebrate cells contain at least 12 different genes for Hsp70 proteins, 3 of which are encoded in the major histocompatibility complex (MHC) class III region. In the human MHC, these are named Hsp70-1, -2, and -Hom. To characterize these proteins, we have determined their substrate binding specificity, their cellular and tissue distribution, and the regulation of their expression. We show for the first time (1) peptide binding specificity of Hsp70-Hom; (2) endogenous expression of Hsp70-Hom in human cell lines; (3) cytoplasmic location of Hsp70-Hom protein under basal conditions and concentration in the nucleus after heat shock; (4) unique RNA expression profiles in human tissues for each of the MHC-encoded Hsp70s, significantly different from that for the constitutive Hsc70; (5) a relative increase in levels of Hsp70-Hom protein, compared with other Hsp70s, in response to interferon gamma; and (6) a specific increase on lipopolysaccharide (LPS) treatment of in vivo messenger RNA levels for the MHC-encoded Hsp70s and the DnaJ homologue, hdj2, relative to other chaperones. The unique tissue distributions and specific up-regulation by LPS of the MHC-encoded Hsp70s suggest some specialization of functions for these members of the Hsp70 family, possibly in the inflammatory response.  相似文献   

12.
Heat shock protein (Hsp) 70B' is a human Hsp70 chaperone that is strictly inducible, having little or no basal expression levels in most cells. Using siRNAs to knockdown Hsp70B' and Hsp72 in HT-29, SW-480, and CRL-1807 human colon cell lines, we have found that the two are regulated coordinately in response to stress. We also have found that proteasome inhibition is a potent activator of hsp70B'. Flow cytometry was used to assay hsp70B' promoter activity in HT-29eGFP cells in this study. Knockdown of both Hsp70B' and Hsp72 sensitized cells to heat stress and increasing concentrations of proteasome inhibitor. These data support the conclusion that Hsp72 is the primary Hsp70 family responder to increasing levels of proteotoxic stress, and Hsp70B' is a secondary responder. Interestingly ZnSO4 induces Hsp70B' and not Hsp72 in CRL-1807 cells, suggesting a stressor-specific primary role for Hsp70B'. Both Hsp70B' and Hsp72 are important for maintaining viability under conditions that increase the accumulation of damaged proteins in HT-29 cells. These findings are likely to be important in pathological conditions in which Hsp70B' contributes to cell survival.  相似文献   

13.
Heat shock protein (Hsp) 70B' is a human Hsp70 chaperone that is strictly inducible, having little or no basal expression levels in most cells. Using siRNAs to knockdown Hsp70B' and Hsp72 in HT-29, SW-480, and CRL-1807 human colon cell lines, we have found that the two are regulated coordinately in response to stress. We also have found that proteasome inhibition is a potent activator of Hsp70B'. Flow cytometry was used to assay Hsp70B' promoter activity in HT-29eGFP cells in this study. Knockdown of both Hsp70B'- and Hsp72-sensitized cells to heat stress and increasing concentrations of proteasome inhibitor. These data support the conclusion that Hsp72 is the primary Hsp70 family responder to increasing levels of proteotoxic stress, and Hsp70B' is a secondary responder. Interestingly ZnSO4 induces Hsp70B' and not Hsp72 in CRL-1807 cells, suggesting a stressor-specific primary role for Hsp70B'. Both Hsp70B' and Hsp72 are important for maintaining viability under conditions that increase the accumulation of damaged proteins in HT-29 cells. These findings are likely to be important in pathological conditions in which Hsp70B' contributes to cell survival.  相似文献   

14.
Activation and regulation of Hsp32 and Hsp70.   总被引:5,自引:0,他引:5  
  相似文献   

15.
Vogel M  Bukau B  Mayer MP 《Molecular cell》2006,21(3):359-367
Crucial to the function of Hsp70 chaperones is the nucleotide-regulated transition between two conformational states, the ATP bound state with high association and dissociation rates for substrates and the ADP bound state with two and three orders of magnitude lower association and dissociation rates. The spontaneous transition between the two states is extremely slow, indicating a high energy barrier for the switch that regulates the transition. Here we provide evidence that a universally conserved proline in the ATPase domain constitutes the switch that assumes alternate conformations in response to ATP binding and hydrolysis. The conformation of the proline, acting through an invariant arginine as relay, determines and stabilizes the opened and closed conformation of the substrate binding domain and thereby regulates the chaperone activity of Hsp70.  相似文献   

16.
Apoptosis, a highly conserved form of cell suicide, is regulated by apoptotic signals and their transduction with caspases, a family of cystein proteases. Caspases are constantly expressed in the normal cells as inactive pro-enzymes. The activity of caspase is regulated by the proteolysis. Sequential proteolytic reactions of caspases are needed to execute apoptosis. Mitochondrial pathway is one of these apoptotic signal pathways, in which caspases are oligomerized into characteristic heptamer structure, called apoptosome, with caspase-9 that activate the effector caspases for apoptosis. To investigate the dynamics of signal transduction pathway regulated by oligomerization, we construct a mathematical model for Apaf-1 heptamer assembly process. The model first reveals that intermediate products can remain unconverted even after all assemble reactions are completed. The second result of the model is that the conversion efficiency of Apaf-1 heptamer assembly is maximized when the initial concentration of cytochrome c is equal to that of Apaf-1. When the concentration of cytochrome c is sufficiently larger or smaller than that of Apaf-1, the final Apaf-1 heptamer production is decreased, because intermediate Apaf-1 oligomers (tetramers and bigger oligomers), which themselves are unable to form active heptamer, accumulate too fast in the cells, choking a smooth production of Apaf-1 heptamer. Slow activation of Apaf-1 monomers and small oligomers increase the conversion efficiency. We also study the optimal number of subunits comprising an active oligomer that maximize the conversion efficiency in assembly process, and found that the tetramer is the optimum.  相似文献   

17.
Hsp40 and TPR1 are chaperone adaptors that regulate Hsp70-dependent folding processes by interacting with the amino terminal and carboxy terminal domains of Hsp70, respectively. In this study, we report cooperative interactions involving Hsp70, Hsp40, and TPR1 that enhance Hsp70-dependent folding of chemically denatured substrates. Hsp40 and Hsp70 dependent folding of chemically denatured luciferase was enhanced by up to 80% when TPR1 was also present. HspBp1, a negative modulator of Hsp70, completely inhibited Hsp70-dependent folding in the presence of Hsp40. However, when TPR1 was included in the reaction, the inhibitory effect of HspBp1 was reversed. To analyze the interactions, Kd analysis and competition assays were carried out. The Kds of the interactions of Hsp40, TRP1, and HspBp1 with Hsp70 were 0.5, 0.6, and 0.04 mM, respectively. Interestingly, the Hsp70/HspBp1 complex could only be dissociated in the presence of both Hsp40 and TPR1, suggesting cooperative interaction between Hsp70, Hsp40 and TPR1. To examine these interactions in vivo, we established a tetracycline-regulatable Hela cell line that expresses Hsp70 in the absence of doxycycline. Expression of HspBp1 inhibited Hsp70-dependent folding of heat-denatured luciferase, and this effect was only reversed in the presence of Hsp40 and TPR1. Our findings reveal a novel mechanism of positive regulation of Hsp70-dependent folding.  相似文献   

18.
The release of cytochrome c from mitochondria results in the formation of an Apaf-1-caspase-9 apoptosome and induces the apoptotic protease cascade by activation of procaspase-3. The present studies demonstrate that heat shock protein 90 (Hsp90) forms a cytosolic complex with Apaf-1 and thereby inhibits the formation of the active complex. Immunodepletion of Hsp90 depletes Apaf-1 and thereby inhibits cytochrome c-mediated activation of caspase-9. Addition of purified Apaf-1 to Hsp90-depleted cytosolic extracts restores cytochrome c-mediated activation of procaspase-9. We also show that Hsp90 inhibits cytochrome c-mediated oligomerization of Apaf-1 and thereby activation of procaspase-9. Furthermore, treatment of cells with diverse DNA-damaging agents dissociates the Hsp90-Apaf-1 complex and relieves the inhibition of procaspase-9 activation. These findings provide the first evidence for a negative cytosolic regulator of cytochrome c-dependent apoptosis and for involvement of a chaperone in the caspase cascade.  相似文献   

19.
Apoptosis is essential in the death process induced by Amyloid-β (Aβ), a major constituent of diffuse plaques found in Alzheimer's disease patients. However, we have found that caspase activation and cell death induced by staurosporine, employed to induce the intrinsic mitochondria-dependent apoptotic pathway, were significantly reduced by 42 amino-acid Aβ42, implying that the peptide also has a negative effect on the apoptotic process. The inhibitory effect of Aβ42 on the apoptotic pathway is associated with its interaction with procaspase-9 and consequent inhibition of Apaf-1 apoptosome assembly. We detected the inhibitory effect in the early stage (< 8 h) of apoptosis, but later caspase activation becomes obvious. Thus we inferred that the inhibitory process on apoptosis begins at an early stage, and the later robust activation surpasses it. We propose that the apoptotic manifestation in Aβ-treated cells is a combined consequence of those anti- and pro-apoptotic processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号