首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endostatin is a fragment of the C-terminal domain NC1 of collagen XVIII that inhibits angiogenesis and tumor growth. We report the characterization of a collagen XV endostatin analogue and its parent NC1 domain, obtained by recombinant expression in mammalian cells. Both NC1 domains contain a trimerization domain, a hinge region that is more sensitive to proteolysis in collagen XVIII and the endostatin domain. Unlike endostatin-XVIII, endostatin-XV does not bind zinc or heparin, which is explained by the crystal structure of endostatin-XV. The collagen XV and XVIII fragments inhibited chorioallantoic membrane angiogenesis induced by basic fibroblast growth factor (FGF-2) or vascular endothelial growth factor (VEGF), but there are striking differences depending on which cytokine is used and whether free endostatins or NC1 domains are applied. The collagen XV and XVIII fragments showed a similar binding repertoire for extracellular matrix proteins. Differences were found in the immunohistological localization in vessel walls and basement membrane zones. Together, these data indentify endostatin-XV as an angiogenesis inhibitor, which differs from endostatin-XVIII in several important functional details.  相似文献   

2.
3.
人内皮抑素基因的克隆与序列分析   总被引:2,自引:0,他引:2  
目的 :克隆与鉴定人内皮抑素基因功能区片段。方法 :采用反转录聚合酶链反应 (RT PCR)的方法 ,从人胎肝总RNA中扩增人内皮抑素基因 ,将其克隆入 pGEM T载体 ,命名为pT hES ,并应用A377自动序列分析仪进行序列分析。结果 :成功克隆了人内皮抑素基因 ,经序列分析表明 ,所克隆的基因序列正确。这为利用基因工程技术生产重组蛋白奠定了基础。  相似文献   

4.
E Hohenester  T Sasaki  B R Olsen    R Timpl 《The EMBO journal》1998,17(6):1656-1664
A number of extracellular proteins contain cryptic inhibitors of angiogenesis. Endostatin is a 20 kDa C-terminal proteolytic fragment of collagen XVIII that potently inhibits endothelial cell proliferation and angiogenesis. Therapy of experimental cancer with endostatin leads to tumour dormancy and does not induce resistance. We have expressed recombinant mouse endostatin and determined its crystal structure at 1.5 A resolution. The structure reveals a compact fold distantly related to the C-type lectin carbohydrate recognition domain and the hyaluronan-binding Link module. The high affinity of endostatin for heparin is explained by the presence of an extensive basic patch formed by 11 arginine residues. Endostatin may inhibit angiogenesis by binding to the heparan sulphate proteoglycans involved in growth factor signalling.  相似文献   

5.
Cloning, expression, and in vitro activity of human endostatin.   总被引:57,自引:0,他引:57  
Endostatin, a 20 kDa C-terminal fragment of collagen XVIII, is a specific inhibitor of endothelial cell proliferation and angiogenesis. In the present study, we have expressed human endostatin in a yeast expression system (10 mg/L). The recombinant protein was expressed in a soluble form and purified to homogeneity. It specifically inhibited the proliferation and migration of endothelial cells. In addition, we report for the first time that endostatin caused G1 arrest of endothelial cells. Also, we show that endostatin treatment resulted in apoptosis of HUVE and HMVE cells and that all of these effects do not occur in nonendothelial cells. Collectively, these findings demonstrate the expression of a biologically active form of human endostatin in yeast and provide important mechanistic insight into endostatin action on endothelial cells.  相似文献   

6.
Endostatin, a potent inhibitor of endothelial cell proliferation, migration, angiogenesis and tumor growth, is proteolytically cleaved from the C-terminal noncollagenous NC1 domain of type XVIII collagen. We investigated the endostatin formation from human collagen XVIII by several MMPs in vitro. The generation of endostatin fragments differing in molecular size (24-30 kDa) and in N-terminal sequences was identified in the cases of MMP-3, -7, -9, -13 and -20. The cleavage sites were located in the protease-sensitive hinge region between the trimerization and endostatin domains of NC1. MMP-1, -2, -8 and -12 did not show any significant activity against the C-terminus of collagen XVIII. The anti-proliferative effect of the 20-kDa endostatin, three longer endostatin-containing fragments generated in vitro by distinct MMPs and the entire NC1 domain, on bFGF-stimulated human umbilical vein endothelial cells was established. The anti-migratory potential of some of these fragments was also studied. In addition, production of endostatin fragments between 24-30 kDa by human hepatoblastoma cells was shown to be due to MMP action on type XVIII collagen. Our results indicate that certain, especially cancer-related, MMP family members can generate biologically active endostatin-containing polypeptides from collagen XVIII and thus, by releasing endostatin fragments, may participate in the inhibition of endothelial cell proliferation, migration and angiogenesis.  相似文献   

7.
Secreted cathepsin L generates endostatin from collagen XVIII   总被引:19,自引:0,他引:19       下载免费PDF全文
Endostatin, an inhibitor of angiogenesis and tumor growth, was identified originally in conditioned media of murine hemangioendothelioma (EOMA) cells. N-terminal amino acid sequencing demonstrated that it corresponds to a fragment of basement membrane collagen XVIII. Here we report that cathepsin L is secreted by EOMA cells and is responsible for the generation of endostatin with the predicted N-terminus, while metalloproteases produce larger fragments in a parallel processing pathway. Efficient endostatin generation requires a moderately acidic pH similar to the pericellular milieu of tumors. The secretion of cathepsin L by a tumor cell line of endothelial origin suggests that this cathepsin may play a role in angiogenesis. We propose that cleavage within collagen XVIII's protease-sensitive region evolved to regulate excessive proteolysis in conditions of induced angiogenesis.  相似文献   

8.
Endostatin, the C-terminal fragment of collagen XVIII, is a potent inhibitor of angiogenesis. Observations that endostatin inhibits endothelial cell migration and induces disassembly of the actin cytoskeleton provide putative cellular mechanisms for this effect. To understand the mechanisms of endostatin-induced intracellular signaling, we analyzed the association of recombinant endostatin with endothelial cell lipid rafts and the roles of its heparin- and integrin-binding properties in this interaction. We observed that a fraction of cell surface-bound endostatin partitioned in low density membrane raft fractions together with caveolin-1. Heparinase treatment of cells prevented the recruitment of endostatin to the lipid rafts but did not affect the association of endostatin with the non-raft fraction, whereas preincubation of endostatin with soluble alpha5beta1 integrin prevented the association of endostatin with the endothelial cell membrane. Endostatin treatment induced recruitment of alpha5beta1 integrin into the raft fraction via a heparan sulfate proteoglycan-dependent mechanism. Subsequently, through alpha5beta1 integrin, heparan sulfate, and lipid raft-mediated interactions, endostatin induced Src-dependent activation of p190RhoGAP with concomitant decrease in RhoA activity and disassembly of actin stress fibers and focal adhesions. These observations provide a cell biological mechanism, which plausibly explains the anti-angiogenic mechanisms of endostatin in vivo.  相似文献   

9.
Endostatin is a fragment of collagen XVIII that acts as an inhibitor of tumor angiogenesis and tumor growth. Anti-tumor effects have been described using both soluble and insoluble recombinant endostatin. However, differences in endostatin structure are likely to cause differences in bioactivity. In the present study, we have investigated the cellular effects of insoluble endostatin. We previously found that insoluble endostatin shows all the hallmarks of amyloid aggregates and potently stimulates tissue plasminogen activator-mediated formation of the serine protease plasmin. We here show that amyloid endostatin induces plasminogen activation by endothelial cells, resulting in vitronectin degradation and plasmin-dependent endothelial cell detachment. Endostatin-mediated stimulation of plasminogen activation, vitronectin degradation, and endothelial cell detachment is inhibited by carboxypeptidase B, indicating an essential role for carboxyl-terminal lysines. Our results suggest that amyloid endostatin may inhibit angiogenesis and tumor growth by stimulating the fibrinolytic system.  相似文献   

10.
Aim of the study was to get a deeper insight in the mechanisms regulating avascularity of cartilaginious tissues. In the center of our interest was the expression of the anti-angiogenic fragment of collagen XVIII and its potency to inhibit angiogenesis. We observed a strong endostatin/collagen XVIII production in articular and fibrocartilage and an inhibitory potency concerning the VEGF-signalling pathway. INTRODUCTION: Cartilaginous tissue is mainly avascular and shows a limited intrinsic capacity for healing. Aim of this study was to investigate the expression of the antiangiogenic peptide endostatin/collagen XVIII in cartilage and fibrocartilage. RESULTS: In fetal epiphyseal cartilage of humans high endostatin/collagen XVIII levels could be detected by ELISA whereas significantly lower levels were found in articular cartilage of adults. In the fibrocartilaginous tissue of the menisci, there was no significant difference in the endostatin/collagen XVIII concentrations between samples of fetuses and adults. But in the menisci of adults, endostatin/collagen XVIII concentrations were higher in the internal avascular two thirds of the meniscus whereas in the fetal menisci higher endostatin/collagen XVIII concentrations were found in the external third. Endostatin/collagen XVIII immunostaining of rat articular cartilage shows that endostatin/collagen XVIII downregulation starts soon after birth. In fetal cartilage and fibrocartilage of rats and humans, endostatin/collagen XVIII could be immunostained in the extracellular matrix and in the pericellular matrix of endothelial cells, fibrochondrocytes and chondrocytes. In adult cells, weak endostatin/collagen XVIII immunostaining was restricted to the pericellular matrix of fibrochondrocytes and chondrocytes. The detection of endostatin/collagen XVIII could be verified by in situ hybridization. Chondrocytes in vitro released measurable amounts of endostatin/collagen XVIII into culture supernatants. Stimulation of chondrocytes with EGF, as an example of a growth factor, or dexamethasone had no influence on endostatin/collagen XVIII expression. Endostatin inhibited VEGF-induced phosphorylation of MAPK in chondrocytes. CONCLUSIONS: The spatial and temporal expression of endostatin/collagen XVIII in cartilaginous tissue and its potency regarding inactivation of VEGF signalling suggests that this antiangiogenic factor is important not only for the development but also for the maintenance of avascular zones in cartilage and fibrocartilage. EXPERIMENTAL PROCEDURES: We analyzed the spatial and temporal expression of endostatin/collagen XVIII--an endogenous angiogenesis inhibiting factor--in cartilage and fibrocartilage of humans and rats by immunohistochemical and biochemical (ELISA) methods and by in situ hybridization. To elucidate possible factors responsible for the induction or suppression of endostatin/collagen XVIII in cartilaginous tissues, chondrocytes (cell line C28/I2) were exposed to EGF and dexamethason. To study the possible interaction of endostatin/collagen XVIII with angiogenic factors, the immortalized human chondrocytes (C28/I2) have been incubated with VEGF and the phosphorylation of the MAPK Erk 1/2 (extracellular-regulated kinases), a known signal transduction pathway for VEGF has been determined under the influence of endostatin.  相似文献   

11.
Chang JH  Javier JA  Chang GY  Oliveira HB  Azar DT 《FEBS letters》2005,579(17):3601-3606
Several anti-angiogenic factors are derived from proteolytic processing of large molecules including endostatin from type XVIII collagen and angiostatin from plasminogen. In previous studies we showed that neostatin-7, the C-terminal 28kDa endostatin-spanning proteolytic fragment, is generated from the proteolytic action of matrix metalloproteinase matrilysin (MMP)-7 on type XVIII collagen. Now, we report a second member of the neostatin family of proteins, neostatin-14. Given the small quantities of neostatin-7 and -14 generated by the breakdown of naturally occurring collagen XVIII (using MMP-7 and -14, respectively), we used two other approaches to characterize the anti-angiogenic properties of these molecules: murine recombinant neostatin in vitro, and gene therapy. We demonstrate that murine recombinant neostatin-7 inhibits calf pulmonary artery endothelial cell proliferation and that microinjection of neostatin-7 and neostatin-14 naked DNA into the corneal stroma of mice results in significant reduction of basic fibroblast growth factor-induced corneal neovascularization. These results provide supportive evidence of the possible anti-angiogenic effect of neostatins.  相似文献   

12.
Isolation and characterization of the circulating form of human endostatin   总被引:1,自引:0,他引:1  
Recently, fragments of extracellular proteins, including endostatin, were defined as a novel group of angiogenesis inhibitors. In this study, human plasma equivalent hemofiltrate was used as a source for the purification of high molecular weight peptides (10–20 kDa), and the isolation and identification of circulating human endostatin are described. The purification of this C-terminal fragment of collagen α1(XVIII) was guided by MALDI-MS and the exact molecular mass determined by ESI-MS was found to be 18 494 Da. N-terminal sequencing revealed the identity of this putative angiogenesis inhibitor and its close relation to mouse endostatin. The cysteine residues 1–3 and 2–4 in the molecule are linked by disulfide bridges. In vitro biological characterization of the native protein demonstrated no anti-proliferative activity on different endothelial cell types. These data indicate that human endostatin, which is a putative angiogenesis inhibitor, is present in the circulation.  相似文献   

13.
Angiogenesis, the formation of new blood vessels from existing capillaries, is critical for tumors to grow beyond a few in size. Tumor cells produce one or more angiogenic factors including fibroblast growth factor and vascular endothelial growth factor. Surprisingly, antiangiogenic factors or angiogenesis inhibitors have been isolated from tumors. Some angiogenesis inhibitors, such as angiostatin, are associated with tumors while others, such as platelet-factor 4 and interferon-alpha are not. Endostatin, a C-terminal product of collagen XVIII, is a specific inhibitor of endothelial cell proliferation, migration and angiogenesis. The mechanism by which endostatin inhibits endothelial cell proliferation and migration is unknown. Endostatin was originally expressed in a prokaryotic system and, late, in a yeast system, thanks to which it is possible to obtain a sufficient quantity of the protein in a soluble and refolded form to be used in preclinical and clinical trials.  相似文献   

14.
Endostatin (20 kDa) is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds zinc, heparin/heparan sulfate, laminin, and sulfatides and inhibits angiogenesis and tumor growth. Here we determined the kinetics and affinity of the interaction of endostatin with heparin/heparan sulfate and investigated the effects of divalent cations on these interactions and on the biological activities of endostatin. The binding of human recombinant endostatin to heparin and heparan sulfate was studied by surface plasmon resonance using BIAcore technology and further characterized by docking and molecular dynamics simulations. Kinetic data, evaluated using a 1:1 interaction model, showed that heparan sulfate bound to and dissociated from endostatin faster than heparin and that endostatin bound to heparin and heparan sulfate with a moderate affinity (K(D) approximately 2 microm). Molecular modeling of the complex between endostatin and heparin oligosaccharides predicted that, compared with mutagenesis studies, two further arginine residues, Arg(47) and Arg(66), participated in the binding. The binding of endostatin to heparin and heparan sulfate required the presence of divalent cations. The addition of ZnCl(2) to endostatin enhanced its binding to heparan sulfate by approximately 40% as well as its antiproliferative effect on endothelial cells stimulated by fibroblast growth factor-2, suggesting that this activity is mediated by the binding of endostatin to heparan sulfate. In contrast, no increase in the antiangiogenic and anti-proliferative activities of endostatin promoted by vascular endothelial growth factor was observed upon the addition of zinc.  相似文献   

15.
Endostatin, the C-terminal fragment of collagen XVIII, is known to suppress tumour growth and angiogenesis by inhibiting endothelial cell proliferation and migration. We have previously shown that endostatin and its precursor are important for the structural organization of basement membranes (BM). The aim of this study was to investigate cutaneous wound healing in mice overexpressing endostatin in keratinocytes (ES-tg) and in mice lacking collagen XVIII (Col18a1(-/-)). Excisional wounds were made on the dorsal skin of mice, the wound areas were measured and the wounds were collected for further analyses after 3, 6 or 14 days. The healing of the wounds was delayed in the ES-tg mice and accelerated in the Col18a1(-/-) mice, and the vascularisation rate was accelerated in the Col18a1(-/-) mice, but not affected in the ES-tg mice. Abnormal capillaries with swollen endothelial cells and narrowed lumens were observed in the wounds of the ES-tg mice. In these mice also the formation of the epidermal BM was delayed, and the structure of the epidermal and capillary BMs was more disorganised. Moreover, detachment of the epidermis from the granulation tissue was observed in half (n=10) of the 6-day-old ES-tg wounds, but in none of the controls, suggesting an increased fragility of the epidermal-dermal junction in the presence of an excess of endostatin.  相似文献   

16.
Endostatin is a potent antiangiogenic protein derived from the noncollagenous domain 1 (NC1) of collagen XVIII. The mechanism by which endostatin exerts its antiangiogenic effect is still incompletely understood. It has been shown that the 27 amino acid N‐terminal fragment of murine endostatin has antitumor, antimigration, and antipermeability activities comparable to the full soluble protein. To understand how this peptide can exert such elaborate function, we performed structural analysis using molecular dynamics to evaluate the behavior of this fragment in aqueous environment. Here, we show that the N‐terminal peptide of murine endostatin is able to assume a well‐defined structure, folding into a zinc‐dependent β‐hairpin conformation. Analyzing the folding mechanism, we were able to understand why the N‐terminal peptide of human endostatin with the same length failed to acquire a stable conformation. Conversely, we were able to predict the successful folding of the R4Q mutant and of a shorter form of the human peptide with 25 residues. Finally, we show that the β‐hairpin conformation assumed by the zinc‐bound peptide of murine endostatin has a high structural similarity with fragments of another family of angiogenesis inhibitors: the integrin‐binding portion of the NC1 domain of collagen IV. Indeed, our docking simulations show that arresten, canstatin, and the endostatin peptide bind to the same spot of αVβ3 integrin, suggesting similar interactions via a common binding site on this receptor. Proteins 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
The functional role of endostatin's affinity for heparan sulfates was addressed using an ex vivo bone angiogenesis model. Capillary-like sprouts showed prominent expression of collagen XVIII/endostatin. Outgrowth of endothelial cells was not altered in the absence of collagen XVIII but inhibited by the addition of recombinant endostatin. Mutant non-heparan sulfate binding endostatin and the collagen XV endostatin homologue were ineffective. The ability of mutant endostatin to bind to capillary structures was reduced when compared to endostatin. Endostatin-XV completely failed to bind to endothelial cells. Our data indicate that endostatin's angiostatic function is heparan sulfate-dependent, and that in situ-binding of endostatin to endothelial cells is increased by heparan sulfates.  相似文献   

18.
Inhibitory effect of full-length human endostatin on in vitro angiogenesis.   总被引:21,自引:0,他引:21  
Endostatin, a C-terminal product of collagen XVIII, is a very powerful angiogenesis inhibitor. In vivo experiments in mice indicate that endostatin dramatically reduces tumor mass without causing the onset of any resistance to the treatment. Recently, a 12-aa shorter human endostatin has been purified from plasma, but is ineffective in in vitro angiogenesis assays. Here we report that the full-length human recombinant endostatin has a potent inhibitory activity in in vitro angiogenesis assays. Two powerful angiogenic factors were used to stimulate endothelial cells: FGF-2 and VEGF-165. Endostatin prevented cell growth both in the basal condition and after stimulation with FGF-2 or VEGF-165. Migration of microvascular endothelial cells toward FGF-2 or VEGF-165 was impaired, both when cells were pretreated with the inhibitor and when endostatin was added together with the growth factors. Furthermore, experiments of inhibition of proliferation performed on nonmicroendothelial cells showed that endostatin was ineffective. This study indicates that human endostatin is a potent angiogenesis inhibitor and suggests its use in human anticancer therapy.  相似文献   

19.
Cell surface glypicans are low-affinity endostatin receptors   总被引:16,自引:0,他引:16  
Endostatin, a collagen XVIII fragment, is a potent anti-angiogenic protein. We sought to identify its endothelial cell surface receptor(s). Alkaline phosphatase- tagged endostatin bound endothelial cells revealing two binding affinities. Expression cloning identified glypican, a cell surface proteoglycan as the lower-affinity receptor. Biochemical and genetic studies indicated that glypicans' heparan sulfate glycosaminoglycans were critical for endostatin binding. Furthermore, endostatin selected a specific octasulfated hexasaccharide from a sequence in heparin. We have also demonstrated a role for endostatin in renal tubular cell branching morphogenesis and show that glypicans serve as low-affinity receptors for endostatin in these cells, as in endothelial cells. Finally, antisense experiments suggest the critical importance of glypicans in mediating endostatin activities.  相似文献   

20.
Endogenous inhibitors of angiogenesis are proved to be a major factor preventing the emergence of clinically manifested stages of human cancer. The protein endostatin, a 20-kD proteolytic fragment of type XVIII collagen, is one of the most active natural inhibitors of angiogenesis. Endostatin specifically inhibits the in vitro and in vivo proliferation of endothelial cells, inducing their apoptosis through inhibition of cyclin D1. On the surface of endothelial cells, endostatin binds with the integrin alpha(5)beta(1) that activates the Src-kinase pathway. The binding of endostatin with integrins also down-regulates the activity of RhoA GTPase and inhibits signaling pathways mediated by small kinases of the Ras and Raf families. All these events promote disassembly of the actin cytoskeleton, disorders in cell-matrix interactions, and decrease in endotheliocyte mobility, i.e., promote the suppression of angiogenesis. Endostatin displays a high antitumor activity in vivo: it inhibits the progression of more than 60 types of tumors. This review summarizes results of numerous studies concerning the biological activity and action mechanism of endostatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号