首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The inducible Pm promoter integrated into broad-host-range plasmid RK2 replicons can be fine-tuned continuously between the uninduced and maximally induced levels by varying the inducer concentrations. To lower the uninduced background level while still maintaining the inducibility for applications in, for example, metabolic engineering and synthetic (systems) biology, we report here the use of mutations in the Pm DNA region corresponding to the 5' untranslated region of mRNA (UTR). Five UTR variants obtained by doped oligonucleotide mutagenesis and selection, apparently reducing the efficiency of translation, were all found to display strongly reduced uninduced expression of three different reporter genes (encoding β-lactamase, luciferase, and phosphoglucomutase) in Escherichia coli. The ratio between induced and uninduced expression remained the same or higher compared to cells containing a corresponding plasmid with the wild-type UTR. Interestingly, the UTR variants also displayed similar effects on expression when substituted for the native UTR in another and constitutive promoter, P1 (P(antitet)), indicating a broad application potential of these UTR variants. Two of the selected variants were used to control the production of the C(50) carotenoid sarcinaxanthin in an engineered strain of E. coli that produces the precursor lycopene. Sarcinaxanthin is produced in this particular strain by expressing three Micrococcus luteus derived genes from the promoter Pm. The results indicated that UTR variants can be used to eliminate sarcinaxanthin production under uninduced conditions, whereas cells containing the corresponding plasmid with a wild-type UTR produced ca. 25% of the level observed under induced conditions.  相似文献   

2.
The Pm promoter inserted chromosomally or in broad-host-range replicons based on plasmid RSF1010 or RK2 are useful systems for both high- and low-level expression of cloned genes in several gram-negative bacterial species. The positive Pm regulator XylS is activated by certain substituted benzoic acid derivatives, and here we show that these effectors induce expression of Pm at similar relative ranking levels in both Escherichia coli and Pseudomonas aeruginosa However, the kinetics of expression was not the same in the two organisms. Different carbon sources and dissolved oxygen levels displayed limited effects on expression, but surprisingly the pH of the growth medium was found to be of major importance. By combining the effects of genetic and environmental parameters, expression from Pm could be varied over a ten-thousand- to a hundred-thousand-fold continuous range, and as an example of its applications we showed that Pm can be used to control the xanthan biosynthesis in Xanthomonas campestris.  相似文献   

3.
4.
GlnD of Escherichia coli is a bifunctional signal-transducing enzyme (102.4 kDa) which uridylylates the allosteric regulatory protein PII and deuridylylates PII-UMP in response to growth with nitrogen excess or limitation, respectively. GlnD catalyzes these reactions in response to high or low levels of cytoplasmic glutamine, respectively, and indirectly directs the expression of nitrogen-regulated genes, e.g., the glnK-amtB operon. We report that chromosomal mini-Tn10 insertions situated after nucleotide number 997 or 1075 of glnD partially suppressed the osmosensitive phenotype of DeltaotsBA or otsA::Tn10 mutations (defective osmoregulatory trehalose synthesis). Strains carrying these glnD::mini-Tn10 mutations either completely repressed the expression of trp::(glnKp-lacZ) or induced this reporter system to nearly 60% of the wild-type glnD level in response to nitrogen availability, an essentially normal response. This was in contrast to the much-studied glnD99::Tn10 mutation, which carries its insertion in the 3' end of the gene, causes a complete repression of glnKp-lacZ expression under all growth conditions, and also confers leaky glutamine auxotrophy. When expressed from the Pm promoter in plasmid constructs, the present glnD mutations produced proteins with an apparent mass of 39 or 42 kDa. These proteins were deduced to comprise 344 or 370 N-terminal residues, respectively, harboring the known nucleotidyltransferase domain of GlnD, plus a common C-terminal addition of 12 residues encoded by IS10. They lacked three other domains of GlnD. Apparently, the transferase domain by itself enabled the cells to catalyze the uridylylation reaction and direct nitrogen-regulated gene expression. Our data indicate that there exists a link between osmotic stress and the nitrogen response.  相似文献   

5.
6.
7.
Effect of dam methylation on Tn5 transposition   总被引:27,自引:0,他引:27  
  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
The Salmonella typhimurium metE and metR genes share a common control region, with overlapping, divergently transcribed promoters. A double gene fusion was constructed in which the metE promoter directs expression of the Escherichia coli lacZ gene and the metR promoter directs expression of the E. coli galK gene. By using an E. coli strain lysogenized with a lambda bacteriophage carrying the metE-lacZ metR-galK double fusion (lambda Elac.Rgal), two classes of cis-acting mutations were isolated that increase metR-galK expression. The first class of mutations causes a simultaneous decrease in metE-lacZ expression by disrupting the normal MetR-mediated activation of the metE promoter. The mutations are located within a region extending from 17 to 34 base pairs upstream of the -35 region of the metE promoter. Gel mobility shift assays and DNaseI protection experiments demonstrated that the MetR protein specifically binds to a 24-base-pair region encompassing these mutations. The second class of mutations increases metR-galK expression by directly altering the promoter consensus sequences of the metE and metR promoters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号