首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large conductance, calcium- and voltage-gated potassium (BK) channels are ubiquitous and critical for neuronal function, immunity, and smooth muscle contractility. BK channels are thought to be regulated by phosphatidylinositol 4,5-bisphosphate (PIP(2)) only through phospholipase C (PLC)-generated PIP(2) metabolites that target Ca(2+) stores and protein kinase C and, eventually, the BK channel. Here, we report that PIP(2) activates BK channels independently of PIP(2) metabolites. PIP(2) enhances Ca(2+)-driven gating and alters both open and closed channel distributions without affecting voltage gating and unitary conductance. Recovery from activation was strongly dependent on PIP(2) acyl chain length, with channels exposed to water-soluble diC4 and diC8 showing much faster recovery than those exposed to PIP(2) (diC16). The PIP(2)-channel interaction requires negative charge and the inositol moiety in the phospholipid headgroup, and the sequence RKK in the S6-S7 cytosolic linker of the BK channel-forming (cbv1) subunit. PIP(2)-induced activation is drastically potentiated by accessory beta(1) (but not beta(4)) channel subunits. Moreover, PIP(2) robustly activates BK channels in vascular myocytes, where beta(1) subunits are abundantly expressed, but not in skeletal myocytes, where these subunits are barely detectable. These data demonstrate that the final PIP(2) effect is determined by channel accessory subunits, and such mechanism is subunit specific. In HEK293 cells, cotransfection of cbv1+beta(1) and PI4-kinaseIIalpha robustly activates BK channels, suggesting a role for endogenous PIP(2) in modulating channel activity. Indeed, in membrane patches excised from vascular myocytes, BK channel activity runs down and Mg-ATP recovers it, this recovery being abolished by PIP(2) antibodies applied to the cytosolic membrane surface. Moreover, in intact arterial myocytes under physiological conditions, PLC inhibition on top of blockade of downstream signaling leads to drastic BK channel activation. Finally, pharmacological treatment that raises PIP(2) levels and activates BK channels dilates de-endothelized arteries that regulate cerebral blood flow. These data indicate that endogenous PIP(2) directly activates vascular myocyte BK channels to control vascular tone.  相似文献   

2.
Phosphatidylinositol bisphosphate (PIP2) is the most abundant phosphoinositide in the plasma membranes of cells and its interaction with many ion channel proteins has proven to be a critical factor enabling ion channel gating. All members of the inwardly rectifying potassium (Kir) channel family depend on PIP2 for their activity, displaying distinct affinities and stereospecificities of interaction with the phosphoinositide. Here, we explored the stoichiometry of Kir channels with PIP2. We first showed that PIP2 regulated the activity of Kir3.4 channels mainly by altering their bursting behavior. Detailed burst analysis indicates that the channels assumed up to four open states and a connectivity of four between open and closed states depending on the available PIP2 levels. Moreover, by controlling the number of PIP2-sensitive subunits in the stoichiometry of a tetrameric Kir2.1 channel, we showed that characteristic channel activity was obtained when at least two wild-type subunits were present. Our studies support a kinetic model for gating of Kir channels by PIP2, where each of the four open states corresponds to the channel activated by one to four PIP2 molecules.  相似文献   

3.
Phosphatidylinositol bisphosphate (PIP(2)) is the most abundant phosphoinositide in the plasma membrane of cells and its interaction with many ion channel proteins has proven to be a critical factor enabling ion channel gating. All members of the inwardly rectifying potassium (Kir) channel family depend on PIP(2) for their activity, displaying distinct affinities and stereospecificities of interaction with the phosphoinositide. Here, we explored the stoichiometry of Kir channels with PIP(2). We first showed that PIP(2) regulated the activity of Kir3.4 channels mainly by altering their bursting behavior. Detailed burst analysis indicates that the channels assumed up to four open states and a connectivity of four between open and closed states depending on the available PIP(2) levels. Moreover, by controlling the number of PIP(2)-sensitive subunits in the stoichiometry of a tetrameric Kir2.1 channel, we showed that characteristic channel activity was obtained when at least two wild-type subunits were present. Our studies support a kinetic model for gating of Kir channels by PIP(2), where each of the four open states corresponds to the channel activated by one to four PIP(2) molecules.  相似文献   

4.
KCNQ channels belong to a family of potassium ion channels with crucial roles in physiology and disease. Heteromers of KCNQ2/3 subunits constitute the neuronal M channels. Inhibition of M currents, by pathways that stimulate phospholipase C activity, controls excitability throughout the nervous system. Here we show that a common feature of all KCNQ channels is their activation by the signaling membrane phospholipid phosphatidylinositol-bis-phosphate (PIP(2)). We show that wortmannin, at concentrations that prevent recovery from receptor-mediated inhibition of M currents, blocks PIP(2) replenishment to the cell surface. Moreover, we identify a C-terminal histidine residue, immediately proximal to the plasma membrane, mutation of which renders M channels less sensitive to PIP(2) and more sensitive to receptor-mediated inhibition. Finally, native or recombinant channels inhibited by muscarinic agonists can be activated by PIP(2). Our data strongly suggest that PIP(2) acts as a membrane-diffusible second messenger to regulate directly the activity of KCNQ currents.  相似文献   

5.
Native and recombinant G protein-gated inwardly rectifying potassium (GIRK) channels are directly activated by the betagamma subunits of GTP-binding (G) proteins. The presence of phosphatidylinositol-bis-phosphate (PIP(2)) is required for G protein activation. Formation (via hydrolysis of ATP) of endogenous PIP(2) or application of exogenous PIP(2) increases the mean open time of GIRK channels and sensitizes them to gating by internal Na(+) ions. In the present study, we show that the activity of ATP- or PIP(2)-modified channels could also be stimulated by intracellular Mg(2+) ions. In addition, Mg(2+) ions reduced the single-channel conductance of GIRK channels, independently of their gating ability. Both Na(+) and Mg(2+) ions exert their gating effects independently of each other or of the activation by the G(betagamma) subunits. At high levels of PIP(2), synergistic interactions among Na(+), Mg(2+), and G(betagamma) subunits resulted in severalfold stimulated levels of channel activity. Changes in ionic concentrations and/or G protein subunits in the local environment of these K(+) channels could provide a rapid amplification mechanism for generation of graded activity, thereby adjusting the level of excitability of the cells.  相似文献   

6.
Several neurotransmitters, including acetylcholine, regulate neuronal tone by suppressing a non-inactivating low-threshold voltage-gated potassium current generated by the M-channel. Agonist dependent control of the M-channel is mediated by calmodulin, activation of anchored protein kinase C (PKC), and depletion of the phospholipid messenger phosphatidylinositol 4,5-bisphosphate (PIP2). In this report, we show how this trio of second messenger responsive events acts synergistically and in a stepwise manner to suppress activity of the M-current. PKC phosphorylation of the KCNQ2 channel subunit induces dissociation of calmodulin from the M-channel complex. The calmodulin-deficient channel has a reduced affinity towards PIP2. This pathway enhances the effect of concomitant reduction of PIP2, which leads to disruption of the M-channel function. These findings clarify how a common lipid cofactor, such as PIP2, can selectively regulate ion channels.  相似文献   

7.
It is well established now that activation of Ca2+ -mobilizing receptors results in the phosphodiesteratic breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), instead of phosphatidylinositol (PI), into myoinositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DG). There is also accumulating experimental evidence which indicates that IP3 and DG may function as second messengers, the former to mobilize Ca2+ from intracellular sites and the latter to activate protein kinase C (PKC). In this review, I have recounted our early studies, which began in 1975 with the original observation that activation of muscarinic cholinergic and adrenergic receptors in the rabbit iris smooth muscle leads to the breakdown of PIP2, instead of PI, and culminated in 1979 in the discovery that the stimulated hydrolysis of PIP2 results in the release of IP3 and DG and that this PIP2 breakdown is involved in the mechanism of smooth muscle contraction. In addition, I have summarized more recent work on the effects of carbachol, norepinephrine, substance P, the platelet-activating factor, prostaglandins, and isoproterenol on PIP2 hydrolysis, IP3 accumulation, DG formation, myosin light chain (MLC) phosphorylation, cyclic AMP production, arachidonic acid release (AA) and muscle contraction in the iris sphincter muscle. These studies suggest: (a) that the IP3-Ca2+ signalling system, through the Ca2+ -dependent MLC phosphorylation pathway, is probably the primary determinant of the phasic component of the contractile response; (b) that the DG-PKC pathway may not be directly involved in the tonic component of muscle contraction, but may play a role in the regulation of IP3 generation; (c) that there are biochemical and functional interactions between the IP3-Ca2+ and the cAMP second messenger systems, cAMP may act as regulator of muscle responses to agonists that exert their action through the IP3-Ca2+ system; and (d) that enhanced PIP2 turnover is involved in desensitization and sensitization of alpha 1-adrenergic- and muscarinic cholinergic-mediated contractions of the dilator and sphincter muscles of the iris, respectively. The contractile response is a typical Ca2+ -dependent process, which makes smooth muscle an ideal tissue to investigate the second messenger functions of IP3 and DG and their interactions with the cAMP system.  相似文献   

8.
Transient receptor potential (TRP) channel, melastatin subfamily (TRPM)4 is a Ca2+-activated monovalent cation channel that depolarizes the plasma membrane and thereby modulates Ca2+ influx through Ca2+-permeable pathways. A typical feature of TRPM4 is its rapid desensitization to intracellular Ca2+ ([Ca2+]i). Here we show that phosphatidylinositol 4,5-biphosphate (PIP2) counteracts desensitization to [Ca2+]i in inside-out patches and rundown of TRPM4 currents in whole-cell patch-clamp experiments. PIP2 shifted the voltage dependence of TRPM4 activation towards negative potentials and increased the channel's Ca2+ sensitivity 100-fold. Conversely, activation of the phospholipase C (PLC)-coupled M1 muscarinic receptor or pharmacological depletion of cellular PIP2 potently inhibited currents through TRPM4. Neutralization of basic residues in a C-terminal pleckstrin homology (PH) domain accelerated TRPM4 current desensitization and strongly attenuated the effect of PIP2, whereas mutations to the C-terminal TRP box and TRP domain had no effect on the PIP2 sensitivity. Our data demonstrate that PIP2 is a strong positive modulator of TRPM4, and implicate the C-terminal PH domain in PIP2 action. PLC-mediated PIP2 breakdown may constitute a physiologically important brake on TRPM4 activity.  相似文献   

9.
10.
Inwardly rectifying potassium channels require binding of phosphatidylinositol-4,5-bisphosphate (PIP2) for channel activity. Three independent sites (aa 175-206, aa 207-246, aa 324-365) were located in the C-terminal domain of Kir2.1 channels by assaying the binding of overlapping fragments to PIP2 containing liposomes. Mutations in the first site, which abolished channel activity, reduced PIP2 binding of this fragment but not of the complete C-terminus. Point mutations in the third site also reduced both, channel activity and PIP2 binding of this segment. The relevance of the third PIP2 binding site provides a basis for the understanding of constitutively active Kir2 channels.  相似文献   

11.
The activity of some voltage-gated calcium channels (VGCCs) can be inhibited by specific G protein beta subunits. Conversely, in the case of N-type VGCCs, protein kinase C can relieve Gbeta-dependent inhibition by phosphorylating at least one specific site on the calcium channel. A recent publication describes a newly identified method of intracellular regulation of specific VGCCs. Wu et al. have uncovered that VGCC activity can be regulated by phosphatidylinositol-4',5'-bisphosphate (PIP2). Whereas PIP2 is important for maintaining the activity (open state) of Cav2.1 (N-type) and Cav2.2 (P/Q-type) channels, the enzymatic breakdown of PIP2 leads to the inactivation of these channels. Additionally, PIP2 can cause changes in voltage-dependent activation of Cav2.2 (P/Q-type) channels that make it more difficult for these channels to open (from the closed state). Furthermore, protein kinase A activity can circumvent PIP2-mediated inhibition. Thus, the PIP2-mediated regulation of VGCCs is tightly controlled by the functions of kinases (and phosphatases), as well as phospholipases. Wu et al. stress that because PIP2 can be found at synapses, PIP2-dependent control of VGCCs "could have profound consequences on synaptic transmission and plasticity."  相似文献   

12.
Raveh A  Cooper A  Guy-David L  Reuveny E 《Cell》2010,143(5):750-760
G protein-coupled receptors (GPCRs) respond to agonists to activate downstream enzymatic pathways or to gate ion channel function. Turning off GPCR signaling is known to involve phosphorylation of the GPCR by GPCR kinases (GRKs) to initiate their internalization. The process, however, is relatively slow and cannot account for the faster desensitization responses required to regulate channel gating. Here, we show that GRKs enable rapid desensitization of the G protein-coupled potassium channel (GIRK/Kir3.x) through a mechanism independent of their kinase activity. On GPCR activation, GRKs translocate to the membrane and quench channel activation by competitively binding and titrating G protein βγ subunits away from the channel. Of interest, the ability of GRKs to effect this rapid desensitization depends on the receptor type. The findings thus reveal a stimulus-specific, phosphorylation-independent mechanism for rapidly downregulating GPCR activity at the effector level.  相似文献   

13.
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is a membrane lipid found in all eukaryotic cells, which regulates many important cellular processes, including ion channel activity. In this study, we used inside-out patch clamp technique, immunoprecipitation, and Western blot analysis to investigate the effect of PIP(2) on epithelial sodium channel activity in A6 cells. A6 cells were cultured in media supplemented with 1.5 microm aldosterone. Single sodium channel activity in excised, inside-out patches was increased by perfusion of the bath solution with 30 microm PIP(2) plus 100 microm GTP (NP(o) = 1.34 +/- 0.14) compared with the paired control (NP(o) = 0.09 +/- 0.02). However, neither 30 microm PIP(2) (NP(o) = 0.11 +/- 0.02) nor 100 microm GTP (NP(o) = 0.10 +/- 0.02) alone stimulated the sodium channels. The PIP(2)-stimulated channel activity was abolished by application of 10 nm G protein betagamma subunits (NP(o) = 0.14 +/- 0.05). However, 10 nm Galpha(i-3) + 30 microm PIP(2) increased both NP(o) and P(o). The stimulating effect of 10 nm Galpha(i-3) + 30 microm PIP(2) is similar to that of 30 microm PIP(2) plus 100 microm GTP. Immunoprecipitation and Western blot analysis show that both Gi(alpha-3) and PIP(2) bind beta and gamma epithelial Na(+) channels (ENaC), but not alpha ENaC. These results indicate that PIP(2) increases ENaC activity by direct interaction with beta or gamma xENaC in the presence of Galpha(i-3).  相似文献   

14.
Phosphatidylinositol-4,5-bisphosphate (PIP(2)) is a major signaling molecule implicated in the regulation of various ion transporters and channels. Here we show that PIP(2) and intracellular MgATP control the activity of the KCNQ1/KCNE1 potassium channel complex. In excised patch-clamp recordings, the KCNQ1/KCNE1 current decreased spontaneously with time. This rundown was markedly slowed by cytosolic application of PIP(2) and fully prevented by application of PIP(2) plus MgATP. PIP(2)-dependent rundown was accompanied by acceleration in the current deactivation kinetics, whereas the MgATP-dependent rundown was not. Cytosolic application of PIP(2) slowed deactivation kinetics and also shifted the voltage dependency of the channel activation toward negative potentials. Complex changes in the current characteristics induced by membrane PIP(2) was fully restituted by a model originally elaborated for ATP-regulated two transmembrane-domain potassium channels. The model is consistent with stabilization by PIP(2) of KCNQ1/KCNE1 channels in the open state. Our data suggest a striking functional homology between a six transmembrane-domain voltage-gated channel and a two transmembrane-domain ATP-gated channel.  相似文献   

15.
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to electrical activity by regulating K(+) fluxes across the plasma membrane. Channel closure is facilitated by ATP, which binds to the pore-forming subunit (Kir6.2). Conversely, channel opening is potentiated by phosphoinositol bisphosphate (PIP(2)), which binds to Kir6.2 and reduces channel inhibition by ATP. Here, we use homology modelling and ligand docking to identify the PIP(2)-binding site on Kir6.2. The model is consistent with a large amount of functional data and was further tested by mutagenesis. The fatty acyl tails of PIP(2) lie within the membrane and the head group extends downwards to interact with residues in the N terminus (K39, N41, R54), transmembrane domains (K67) and C terminus (R176, R177, E179, R301) of Kir6.2. Our model suggests how PIP(2) increases channel opening and decreases ATP binding and channel inhibition. It is likely to be applicable to the PIP(2)-binding site of other Kir channels, as the residues identified are conserved and influence PIP(2) sensitivity in other Kir channel family members.  相似文献   

16.
ATP-sensitive potassium (K(ATP)) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP(2)). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP(2), SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP(2) sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP(2) gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation.  相似文献   

17.
The phosphatidylinositol 4,5-bisphosphate (PIP(2))-sensitive inward rectifier channel Kir2.1 was expressed in Drosophila photoreceptors and used to monitor in vivo PIP(2) levels. Since the wild-type (WT) Kir2.1 channel appeared to be saturated by the prevailing PIP(2) concentration, we made a single amino acid substitution (R228Q), which reduced the effective affinity for PIP(2) and yielded channels generating currents proportional to the PIP(2) levels relevant for phototransduction. To isolate Kir2.1 currents, recordings were made from mutants lacking both classes of light-sensitive transient receptor potential channels (TRP and TRPL). Light resulted in the effective depletion of PIP(2) by phospholipase C (PLC) in approximately three or four microvilli per absorbed photon at rates exceeding approximately 150% of total microvillar phosphoinositides per second. PIP(2) was resynthesized with a half-time of approximately 50 s. When PIP(2) resynthesis was prevented by depriving the cell of ATP, the Kir current spontaneously decayed at maximal rates representing a loss of approximately 40% loss of total PIP(2) per minute. This loss was attributed primarily to basal PLC activity, because it was greatly decreased in norpA mutants lacking PLC. We tried to confirm this by using the PLC inhibitor U73122; however, this was found to act as a novel inhibitor of the Kir2.1 channel. PIP(2) levels were reduced approximately 5-fold in the diacylglycerol kinase mutant (rdgA), but basal PLC activity was still pronounced, consistent with the suggestion that raised diacylglycerol levels are responsible for the constitutive TRP channel activity characteristic of this mutant.  相似文献   

18.
Loss-of-function mutations in the inward rectifier potassium channel, Kir2.1, cause Andersen-Tawil syndrome (ATS-1), an inherited disorder of periodic paralysis and ventricular arrhythmias. Here, we explore the mechanism by which a specific ATS-1 mutation (V302M) alters channel function. Val-302 is located in the G-loop, a structure that is believed to form a flexible barrier for potassium permeation at the apex of the cytoplasmic pore. Consistent with a role in stabilizing the G-loop in an open conformation, we found the V302M mutation specifically renders the channel unable to conduct potassium without altering subunit assembly or attenuating cell surface expression. As predicted by the position of the Val-302 side chain in the crystal structure, amino acid substitution analysis revealed that channel activity and phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity are profoundly sensitive to alterations in the size, shape, and hydrophobicity of side chains at the Val-302 position. The observations establish that the Val-302 side chain is a critical determinant of potassium conduction through the G-loop. Based on our functional studies and the cytoplasmic domain crystal structure, we suggest that Val-302 may influence PIP2 gating indirectly by translating PIP2 binding to conformational changes in the G-loop pore.  相似文献   

19.
Ca(2+)-permeable cation channels consisting of canonical transient receptor potential 1 (TRPC1) proteins mediate Ca(2+) influx pathways in vascular smooth muscle cells (VSMCs), which regulate physiological and pathological functions. We investigated properties conferred by TRPC1 proteins to native single TRPC channels in acutely isolated mesenteric artery VSMCs from wild-type (WT) and TRPC1-deficient (TRPC1(-/-)) mice using patch-clamp techniques. In WT VSMCs, the intracellular Ca(2+) store-depleting agents cyclopiazonic acid (CPA) and 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM) both evoked channel currents, which had unitary conductances of ~2 pS. In TRPC1(-/-) VSMCs, CPA-induced channel currents had 3 subconductance states of 14, 32, and 53 pS. Passive depletion of intracellular Ca(2+) stores activated whole-cell cation currents in WT but not TRPC1(-/-) VSMCs. Differential blocking actions of anti-TRPC antibodies and coimmunoprecipitation studies revealed that CPA induced heteromeric TRPC1/C5 channels in WT VSMCs and TRPC5 channels in TRPC1(-/-) VSMCs. CPA-evoked TRPC1/C5 channel activity was prevented by the protein kinase C (PKC) inhibitor chelerythrine. In addition, the PKC activator phorbol 12,13-dibutyrate (PDBu), a PKC catalytic subunit, and phosphatidylinositol-4,5-bisphosphate (PIP(2)) and phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) activated TRPC1/C5 channel activity, which was prevented by chelerythrine. In contrast, CPA-evoked TRPC5 channel activity was potentiated by chelerythrine, and inhibited by PDBu, PIP(2), and PIP(3). TRPC5 channels in TRPC1(-/-) VSMCs were activated by increasing intracellular Ca(2+) concentrations ([Ca(2+)](i)), whereas increasing [Ca(2+)](i) had no effect in WT VSMCs. We conclude that agents that deplete intracellular Ca(2+) stores activate native heteromeric TRPC1/C5 channels in VSMCs, and that TRPC1 subunits are important in determining unitary conductance and conferring channel activation by PKC, PIP(2), and PIP(3).  相似文献   

20.
Adaptation is a common feature of many sensory systems. But its occurrence to pain sensation has remained elusive. Here we address the problem at the receptor level and show that the capsaicin ion channel TRPV1, which mediates nociception at the peripheral nerve terminals, possesses properties essential to the adaptation of sensory responses. Ca2+ influx following the channel opening caused a profound shift (∼14-fold) of the agonist sensitivity, but did not alter the maximum attainable current. The shift was adequate to render the channel irresponsive to normally saturating concentrations, leaving the notion that the channel became no longer functional after desensitization. By simultaneous patch-clamp recording and total internal reflection fluorescence (TIRF) imaging, it was shown that the depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by Ca2+ influx had a rapid time course synchronous to the desensitization of the current. The extent of the depletion was comparable to that by rapamycin-induced activation of a PIP2 5-phosphatase, which also caused a significant reduction of the agonist sensitivity without affecting the maximum response. These results support a prominent contribution of PIP2 depletion to the desensitization of TRPV1 and suggest the adaptation as a possible physiological function for the Ca2+ influx through the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号