首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanisms coordinating adhesion, actin organization, and membrane traffic during growth cone migration are poorly understood. Neuritogenesis and branching from retinal neurons are regulated by the Rac1B/Rac3 GTPase. We have identified a functional connection between ADP-ribosylation factor (Arf) 6 and p95-APP1 during the regulation of Rac1B-mediated neuritogenesis. P95-APP1 is an ADP-ribosylation factor GTPase-activating protein (ArfGAP) of the GIT family expressed in the developing nervous system. We show that Arf6 has a predominant role in neurite extension compared with Arf1 and Arf5. Cotransfection experiments indicate a specific and cooperative potentiation of neurite extension by Arf6 and the carboxy-terminal portion of p95-APP1. Localization studies in neurons expressing different p95-derived constructs show a codistribution of p95-APP1 with Arf6, but not Arf1. Moreover, p95-APP1-derived proteins with a mutated or deleted ArfGAP domain prevent Rac1B-induced neuritogenesis, leading to PIX-mediated accumulation at large Rab11-positive endocytic vesicles. Our data support a role of p95-APP1 as a specific regulator of Arf6 in the control of membrane trafficking during neuritogenesis.  相似文献   

2.
We describe here the identification and characterization of avian p95-APP2, a multi-domain protein of a recently identified family of ADP-ribosylation factor (ARF)-GTPase-activating proteins (GAPs) including mammalian G protein-coupled receptor kinases (GRK)-interactor 1 (GIT1), paxillin kinase linker (PKL), and GIT2, as well as avian p95-APP1. The p95-APP2 is eluted from Rac-GTP-gamma-S, but not from Rac-GDP-beta-S columns. As other members of the family, p95-APP2 has binding regions for the focal adhesion protein paxillin, and for the Rac exchanging factor PIX. Sequence comparison indicates that p95-APP2 is the avian orthologue of mammalian PKL. Expression studies showed a largely diffuse distribution of the full length p95-APP2, without evident effects on cell morphology. We observed a dramatic difference between the localization of the amino-terminal portion of the protein, including the ARF-GAP domain and the three ankyrin repeats, and the carboxy-terminal portion including the paxillin-binding site. Moreover, the expression of truncated carboxy-terminal polypeptides including both the PIX- and paxillin-binding regions leads to a marked localization of the protein together with paxillin at large vesicles. Comparison of the expression of corresponding ARF-GAP-deficient constructs from p95-APP2 and p95-APP1 shows their distribution at distinct endocytic compartments. Altogether, these data support a role of distinct members of this family of ARF-GAPs in the regulation of different steps of membrane traffic during cell motility, and suggest that p95-APP2 may shuttle between an intracellular compartment and the cell periphery, although, further work will be needed to address this point.  相似文献   

3.
G protein-coupled receptor kinase interactors (GITs) are adaptor proteins with ADP-ribosylating factor--GTPase-activating protein (ARF-GAP) activity that form complexes with the p21-activated kinase-interacting exchange factor (PIX) guanine nucleotide exchanging factors for Rac and Cdc42. In this study we have characterized the endogenous GIT1/p95-APP1/Cat1 (GIT1)- PIX complexes in neuronal and non-neuronal cells. In COS7 cells, immunocytochemical analysis shows the localization of endogenous GIT1 in the perinuclear region of the cell, as well as at the cell periphery, where GIT1 co-localizes with filamentous actin. The perinuclear localization of endogenous GIT1 was confirmed in avian fibroblasts. In COS7 cells, immunoprecipitation and microsequencing experiments with either anti-GIT1 or anti-betaPIX antibodies unequivocally show that betaPIX is uniquely associated with GIT1 in lysates from these cells, while GIT2/PKL/p95-APP2/Cat2 (GIT2) is undetectable in the endogenous complexes. Moreover, this analysis demonstrates that betaPIX is the limiting factor for the formation of the endogenous complexes, since a small fraction of GIT1 can be co-immunoprecipitated with most betaPIX from these cells. Saponin treatment of unfixed cells indicates that betaPIX-bound GIT1 is preferentially retained in the saponin-resistant fraction when compared to betaPIX-free GIT1. Moreover, analysis by tissue fractionation shows that a significant fraction of the endogenous GIT1-betaPIX complex is firmly associated to membranes from brain homogenates. Our findings show the specific localization of the complex at intracellular membranes, and indicate a correlation between the association of GIT1 to betaPIX, and the localization of the endogenous complex at membranes.  相似文献   

4.
The ARF6 GTPase, the least conserved member of the ADP ribosylation factor (ARF) family, associates with the plasma membrane and intracellular endosome vesicles. Mutants of ARF6 defective in GTP binding and hydrolysis have a marked effect on endocytic trafficking and the gross morphology of the peripheral membrane system. Here we report that expression of the GTPase-defective mutant of ARF6, ARF6(Q67L), remodels the actin cytoskeleton by inducing actin polymerization at the cell periphery. This cytoskeletal rearrangement was inhibited by co-expression of ARF6(Q67L) with deletion mutants of POR1, a Rac1-interacting protein involved in membrane ruffling, but not with the dominant-negative mutant of Rac1, Rac1(S17N). A synergistic effect between POR1 and ARF6 for the induction of actin polymerization was detected. Furthermore, we observed that ARF6 interacts directly with POR1 and that this interaction was GTP dependent. These findings indicate that ARF6 and Rac1 function on distinct signaling pathways to mediate cytoskeletal reorganization, and suggest a role for POR1 as an important regulatory element in orchestrating cytoskeletal rearrangements at the cell periphery induced by ARF6 and Rac1.  相似文献   

5.
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration.  相似文献   

6.
Action polymerization is essential for a variety of cellular processes including movement, cell division and shape change. The induction of actin polymerization requires the generation of free actin filament barbed ends, which results from the severing or uncapping of pre-existing actin filaments [1] [2], or de novo nucleation, initiated by the Arp2/3 complex [3] [4] [5] [6] [7]. Although little is known about the signaling pathways that regulate actin assembly, small GTPases of the Rho family appear to be necessary [8] [9] [10] [11]. In thrombin-stimulated platelets, the Rho family GTPase Rac1 induces actin polymerization by stimulating the uncapping of actin filament barbed ends [2]. The mechanism by which Rac regulates uncapping is unclear, however. We previously demonstrated that Rac interacts with a type I phosphatidylinositol-4-phosphate 5-kinase (PIP 5-kinase) in a GTP-independent manner [12] [13]. Because PIP 5-kinases synthesize phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), a lipid that dissociates capping proteins from the barbed ends of actin filaments [14] [15] [16], they are good candidates for mediating the effects of Rac on actin assembly. Here, we have identified the Rac-associated PIP 5-kinase as the PIP 5-kinase isoforms alpha and beta. When added to permeabilized platelets, PIP 5-kinase alpha induced actin filament uncapping and assembly. In contrast, a kinase-inactive PIP 5-kinase alpha mutant failed to induce actin assembly and blocked assembly stimulated by thrombin or Rac. Furthermore, thrombin- or Rac-induced actin polymerization was inhibited by a point mutation in the carboxyl terminus of Rac that disrupts PIP 5-kinase binding. These results demonstrate that PIP 5-kinase alpha is a critical mediator of thrombin- and Rac-dependent actin assembly.  相似文献   

7.
E-cadherin is a major cell-cell adhesion protein of epithelia that is trafficked to the basolateral cell surface in a polarized fashion. The exact post-Golgi route and regulation of E-cadherin transport have not been fully described. The Rho GTPases Cdc42 and Rac1 have been implicated in many cell functions, including the exocytic trafficking of other proteins in polarized epithelial cells. These Rho family proteins are also associated with the cadherin-catenin complexes at the cell surface. We have used functional mutants of Rac1 and Cdc42 and inactivating toxins to demonstrate specific roles for both Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Dominant-negative mutants of Cdc42 and Rac1 accumulate E-cadherin at a distinct post-Golgi step. This accumulation occurs before p120ctn interacts with E-cadherin, because p120ctn localization was not affected by the Cdc42 or Rac1 mutants. Moreover, the GTPase mutants had no effect on the trafficking of a targeting mutant of E-cadherin, consistent with the selective involvement of Cdc42 and Rac1 in basolateral trafficking. These results provide a new example of Rho GTPase regulation of basolateral trafficking and demonstrate novel roles for Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Rho family GTPases; catenin; polarity; sorting; actin  相似文献   

8.
Desmoglein 3 (Dsg3), a member of the desmoglein sub-family, serves as an adhesion molecule in desmosomes. Our previous study showed that overexpression of human Dsg3 in several epithelial lines induces formation of membrane protrusions, a phenotype suggestive of Rho GTPase activation. Here we examined the interaction between Dsg3 and actin in detail and showed that endogenous Dsg3 colocalises and interacts with actin, particularly the junctional actin in a Rac1-dependent manner. Ablation of Rac1 activity by dominant negative Rac1 mutant (N17Rac1) or the Rac1 specific inhibitor (NSC23766) directly disrupts the interaction between Dsg3 and actin. Assembly of the junctional actin at the cell borders is accompanied with enhanced levels of Dsg3, while inhibition of Dsg3 by RNAi results in profound changes in the organisation of actin cytoskeleton. In accordance, overexpression of Dsg3 results in a remarkable increase of Rac1 and Cdc42 activities and to a lesser extent, RhoA. The enhancements in Rho GTPases are accompanied by the pronounced actin-based membrane structures such as lamellipodia and filopodia, enhanced rate of actin turnover and cell polarisation. Together, our results reveal an important novel function for Dsg3 in promoting actin dynamics through regulating Rac1 and Cdc42 activation in epithelial cells.  相似文献   

9.
The p19(Arf)-p53 tumor suppressor pathway plays a critical role in cell-cycle checkpoint control and apoptosis, whereas Rho family small GTPases are key regulators of actin structure and cell motility. By using primary mouse embryonic fibroblasts that lack Arf, p53, or both, we studied the involvement of the p19(Arf)-p53 pathway in the regulation of cell motility and its relationship with Rho GTPases. Deletion of Arf and/or p53 led to actin cytoskeleton reorganization and a significant increase in cell motility. The endogenous phosphoinositide (PI) 3- kinase and Rac1 activities were elevated in Arf(-/-) and p53(-/-) cells, and these activities are required for p19(Arf)- and p53-regulated migration. Reintroduction of the wild type Arf or p53 genes into Arf(-/-) or p53(-/-) cells reversed the PI 3-kinase and Rho GTPase activities as well as the migration phenotype. These results suggest a functional relationship between an established tumor suppressor pathway and a signaling module that controls actin structure and cell motility and show that p19(Arf) and p53 negatively regulate cell migration by suppression of PI 3-kinase and Rac1 activities.  相似文献   

10.
11.
Semaphorins and their receptors, plexins, are widely expressed in embryonic and adult tissues. In general, their functions are poorly characterized, but in neurons they provide essential attractive and repulsive cues that are necessary for axon guidance [1-3]. The Rho family GTPases Rho, Rac, and Cdc42 control signal transduction pathways that link plasma membrane receptors to the actin cytoskeleton and thus regulate many actin-driven processes, including cell migration and axon guidance [4-7]. Using yeast two-hybrid screening and in vitro interaction assays, we show that Rac in its active, GTP bound state interacts directly with the cytoplasmic domain of mammalian and Drosophila B plexins. Plexin-B1 clustering in fibroblasts does not cause the formation of lamellipodia, which suggests that Rac is not activated. Instead, it results in the assembly of actin:myosin filaments and cell contraction, which indicates Rho activation. Surprisingly, these cytoskeletal changes are both Rac and Rho dependent. Clustering of a mutant plexin, lacking the Rac binding region, induced similar cytoskeletal changes, and this finding indicates that the physical interaction of plexin-B1 with Rac is not required for Rho activation. Our findings that plexin-B signaling to the cytoskeleton is both Rac and Rho dependent form a starting point for unraveling the mechanism by which semaphorins and plexins control axon guidance and cell migration.  相似文献   

12.
The urokinase-type plasminogen activator receptor (uPAR) is involved in the regulation of cell motility in a variety of cell types. We show here that expression of human uPAR in growing murine fibroblasts leads to a dramatic reorganization of the actin cytoskeleton. uPAR expression induces multiple rapidly advancing protrusions that resemble the leading edge of migrating cells. The cytoskeletal changes are independent of uPA and activation of the RGD-binding activity of integrins but require uPAR binding to vitronectin (VN). The actin reorganization is blocked by coexpression of dominant negative versions of either Rac (N17Rac) or p130Cas, but not by inhibitors of Cdc42 or Rho, and is accompanied by a Rac-dependent increase in cell motility. In addition, a fourfold increase in the level of activated Rac is induced by uPAR expression. We conclude that uPAR interacts with VN both to initiate a p130Cas/Rac-dependent signaling pathway leading to actin reorganization and increased cell motility and to act as an adhesion receptor required for these responses. This mechanism may play a role in uPAR-mediated regulation of cell motility at sites where VN and uPAR are co-expressed, such as malignant tumors.  相似文献   

13.
Rac1 is a member of the Rho family of small GTPases, which regulate cell adhesion and migration through their control of the actin cytoskeleton. Rho-GTPases are structurally very similar, with the exception of a hypervariable domain in the C terminus. Using peptide-based pulldown assays in combination with mass spectrometry, we previously showed that the hypervariable domain in Rac1 mediates specific protein-protein interactions. Most recently, we found that the Rac1 C terminus associates to the ubiquitously expressed adapter protein CMS/CD2AP. CD2AP is critical for the formation and maintenance of a specialized cell-cell contact between kidney podocyte foot processes, the slit diaphragm. Here, CD2AP links the cell adhesion protein nephrin to the actin cytoskeleton. In addition, CMS/CD2AP binds actin-regulating proteins, such as CAPZ and cortactin, and has been implicated in the internalization of growth factor receptors. We found that CD2AP specifically interacts with the C-terminal domain of Rac1 but not with that of other Rho family members. Efficient interaction between Rac1 and CD2AP requires both the proline-rich domain and the poly-basic region in the Rac1 C terminus, and at least two of the three N-terminal SH3 domains of CD2AP. CD2AP co-localizes with Rac1 to membrane ruffles, and small interfering RNA-based experiments showed that CD2AP links Rac1 to CAPZ and cortactin. Finally, expression of constitutive active Rac1 recruits CD2AP to cell-cell contacts in epithelial cells, where we found CD2AP to participate in the control of the epithelial barrier function. These data identify CD2AP as a novel Rac1-associated adapter protein that participates in the regulation of epithelial cell-cell contact.  相似文献   

14.
Dynamic cellular rearrangements involving the actin cytoskeleton are required of both Sertoli and germ cells during spermatogenesis. Rho family small G proteins have been implicated in the control of the actin cytoskeleton in numerous cell types. Therefore, RhoA and Rac1 were investigated in Sertoli and germ cells. RhoA and Rac1 have been detected at both the mRNA and protein levels in these cells. In addition, Sertoli cell L-selectin is shown to interact with actin binding proteins, potentially providing a link between L-selectin and Rac1 signaling. Finally, inactivation of Sertoli cell Rho family proteins yields disruption of the actin cytoskeleton.  相似文献   

15.
Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF) stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration.  相似文献   

16.
Regulation of actin cytoskeleton by Rap1 binding to RacGEF1   总被引:1,自引:0,他引:1  
Rap1 is rapidly and transiently activated in response to chemoattractant stimulation and helps establish cell polarity by locally modulating cytoskeletons. Here, we investigated the mechanisms by which Rap1 controls actin cytoskeletal reorganization in Dictyostelium and found that Rap1 interacts with RacGEF1 in vitro and stimulates F-actin polymerization at the sites where Rap1 is activated upon chemoattractant stimulation. Live cell imaging using GFP-coronin, a reporter for F-actin, demonstrates that cells expressing constitutively active Rap1 (Rap1CA) exhibit a high level of F-actin uniformly distributed at the cortex including the posterior and lateral sides of the chemotaxing cell. Examination of the localization of a PH-domain containing PIP3 reporter, PhdA-GFP, and the activation of Akt/Pkb and other Ras proteins in Rap1CA cells reveals that activated Rap1 has no effect on the production of PIP3 or the activation of Akt/Pkb and Ras proteins in response to chemoattractant stimulation. Rac family proteins are crucial regulators in actin cytoskeletal reorganization. In vitro binding assay using truncated RacGEF1 proteins shows that Rap1 interacts with the DH domain of RacGEF1. Taken together, these results suggest that Rap1-mediated F-actin polymerization probably occurs through the Rac signaling pathway by directly binding to RacGEF1.  相似文献   

17.
The FERM domain containing protein 7 gene (FRMD7) associated with the X-linked disorder idiopathic congenital nystagmus (ICN) is involved in the regulation of neurite elongation during neuronal development. Members of the Rho family of small G-proteins (Rho GTPases) are key regulators of the actin cytoskeleton and are implicated in the control of neuronal morphology. The Rho GDP dissociation inhibitor alpha, RhoGDIα, the main regulator of Rho GTPases, can form a complex with the GDP-bound form of Rho GTPases and inhibit their activation. Here, we demonstrate that the full length of the mouse FRMD7, rather than the N-terminus or the C-terminus alone, directly interacts with RhoGDIα and specifically initiates Rac1 signaling in mouse neuroblastoma cell line (neuro-2a). Moreover, we show that wild-type human FRMD7 protein is able to activate Rac1 signaling by interacting with RhoGDIα and releasing Rac1 from Rac1-RhoGDIα complex. However, two missense mutations (c.781C>G and c.886G>C) of human FRMD7 proteins weaken the ability to interact with RhoGDIα and release less Rac1, that induce the activation of Rac1 to a lesser degree; while an additional mutant, c.1003C>T, which results in a C-terminal truncated protein, almost fails to interact with RhoGDIα and to activate Rac1 signaling. Collectively, these results suggest that FRMD7 interacts with one of the Rho GTPase regulators, RhoGDIα, and activates the Rho subfamily member Rac1, which regulates reorganization of actin filaments and controls neuronal outgrowth. We predict that human mutant FRMD7 thus influences Rac1 signaling activation, which can lead to abnormal neuronal outgrowth and cause the X-linked ICN.  相似文献   

18.
Among the mechanisms by which the Ras oncogene induces cellular transformation, Ras activates the mitogen-activated protein kinase (MAPK or ERK) cascade and a related cascade leading to activation of Jun kinase (JNK or SAPK). JNK is additionally regulated by the Ras-related G proteins Rac and Cdc42. Ras also regulates the actin cytoskeleton through an incompletely elucidated Rac-dependent mechanism. A candidate for the physiological effector for both JNK and actin regulation by Rac and Cdc42 is the serine/threonine kinase Pak (p65pak). We show here that expression of a catalytically inactive mutant Pak, Pak1(R299), inhibits Ras transformation of Rat-1 fibroblasts but not of NIH 3T3 cells. Typically, 90 to 95% fewer transformed colonies were observed in cotransfection assays with Rat-1 cells. Pak1(R299) did not inhibit transformation by the Raf oncogene, indicating that inhibition was specific for Ras. Furthermore, Rat-1 cell lines expressing Pak1(R299) were highly resistant to Ras transformation, while cells expressing wild-type Pak1 were efficiently transformed by Ras. Pak1(L83,L86,R299), a mutant that fails to bind either Rac or Cdc42, also inhibited Ras transformation. Rac and Ras activation of JNK was inhibited by Pak1(R299) but not by Pak1(L83,L86,R299). Ras activation of ERK was inhibited by both Pak1(R299) and Pak1(L83,L86,R299), while neither mutant inhibited Raf activation of ERK. These results suggest that Pak1 interacts with components essential for Ras transformation and that inhibition can be uncoupled from JNK but not ERK signaling.  相似文献   

19.
The Rho family of small GTPases plays a central role in intracellular signal transduction, particularly in reorganization of the actin cytoskeleton. Rho activity induces cell contractility, whereas Rac promotes cellular protrusion, which counteracts Rho signaling. In this regard, the reciprocal balance between these GTPases determines cell morphology and migratory behavior. Here we demonstrate that Tiam1/Rac1 signaling is able to antagonize Rho activity directly at the GTPase level in COS-7 cells. p190-RhoGAP plays a central regulatory role in this signaling pathway. Interfering with its activation by Src-kinase-dependent tyrosine phosphorylation or its recruitment to the membrane through interaction with the SH2 domains of p120-RasGAP blocks the Tiam1-mediated rapid downregulation of Rho. This process is mediated by Rac1, but not by Rac2 or Rac3 isoforms. Our data provide evidence for a biochemical pathway of the reciprocal regulation of two related small GTPases, which are key elements in cell migration.  相似文献   

20.
Activin B belongs to the TGFβ family of growth factors and is upregulated in clear cell renal cell carcinoma cells by hypoxia inducible factors. Expression of Activin B is required for tumor growth in vivo and tumor cell invasion in vitro. Here we show that activation of RhoA signaling counteracts Activin B mediated disassembly of actin stress fibers, mesenchymal cell morphology and invasiveness, whereas inhibition of RhoA rescues these effects in Activin B knockdown cells. Conversely, Activin B inhibits RhoA signaling suggesting that there is an antagonistic connection between both pathways. In addition we found that Rac1 plays an opposite role to RhoA, i.e. activation of Rac1 initiates loss of actin stress fibers, promotes a mesenchymal cell morphology and induces invasion in Activin B knockown cells, whereas inhibition of Rac1 abolishes these Activin B effects. Collectively, our data provide evidence that reduction of RhoA signaling by Activin B together with persistent Rac1 activity is a prerequisite for inducing an invasive phenotype in clear cell renal cell carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号