首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
利用卵胞浆精子注射(ICSI)技术生产转基因小鼠   总被引:2,自引:0,他引:2  
在掌握小鼠ICSI技术的基础上,进行了ICSI技术生产转基因小鼠的研究。来自成年KM小鼠附睾尾的精子,使用未加抗冻剂的HEPES-CZB溶液,在液氮中冻融1次后,用于本实验。解冻精子与DNA混匀1min后,精子头被显微注射到B6D2F1小鼠成熟卵母细胞质中。精子头与pEGFP-N1环状DNA共注射生产的ICSI受精卵,在CZB溶液中培养至囊胚期时,39.1%(9/23)的囊胚表达GFP基因。精子注射后6h,直接移植ICSI受精卵后,7只妊娠受体一共产仔30只,效率为23.8%(30/126)。Southernblot分析其中16只小鼠发现,3只(18.8%)转基因小鼠同时整合了GFP和Neomycin基因,它们全部来自精子和线性DNA混合的实验组(阳性效率为33.3%,3/9),相反,精子与环状质粒DNA共注射生产的7只ICSI后代中,没有检测到外源基因。转基因小鼠整合的外源基因能够传递给它们后代。结果说明,利用ICSI技术可以高效地生产转基因小鼠,宿主基因组可能更容易整合线性化的外源基因。  相似文献   

2.
利用显微操作仪将小鼠精子注入家兔卵母细胞的胞质内和透明带下,对鼠兔异种精卵互作和异种受精胚胎的发育进行了研究,并对注射精子的数量及卵的体外成熟时间等影响鼠兔异种显微受精的因素进行了探讨,结果如下:(1)将小鼠精子分别注入兔卵胞质内和透明带下,均能激活兔卵母细胞,导致精核解聚和原核形成;(2)小鼠精子注入兔卵胞质内和透明带下受精,杂种胚胎体外培养能发育到8-细胞期;(3)鼠兔异种受精4-细胞胚胎染色体标本制备观察结果表明,它们为正常二倍体;(4)鼠兔异种受精4-细胞胚胎的超微结构观察结果表明,它们极近似兔正常4-细胞胚胎的超微结构;(5)将小鼠精子注入兔卵透明带下,注射5—10个精子组卵的受精率(32.4%)和卵裂率(16.2%)均高于注射单个精子组的,但二组间差异不显著(P>0.05);DM 15%NCS液中体外成熟培养11—12h兔卵透明带下注入1—2个小鼠精子后的受精率(42.3%)和卵裂率(30.8%)均高于体外成熟培养24—25h组的,但二组间差异未达到显著水平(P>0.05)。  相似文献   

3.
为了评价父系遗传背景对小鼠体细胞核移植效率的影响,本试验用129/Sv小鼠、C3H小鼠和ICR的雄鼠分别与昆明雌鼠(KM)杂交的F1代为研究对象,以KM自交鼠F1代为对照,比较卵母细胞的可操作性以及重构胚的激活率、卵裂率和囊胚发育率。结果显示:129/Sv×KM、C3H×KM和KM×KM的去核效率显著高于ICR×KM(78.0%、82.9%、81.0%vs63.9%;P<0.05);129/Sv×KM的注核成功率显著高于C3H×KM、ICR×KM和KM×KM(83.0%vs59.6%、55.5%、71.4%;P<0.05);129/Sv×KM的重构胚激活率显著高于C3H×KM、ICR×KM和KM×KM(97.3%vs85.2%、81.7%、78.3%;P<0.05);C3H×KM的卵裂率和囊胚率显著高于ICR×KM和KM×KM(84.5%、28.2%vs63.2%、11.4%,64.5%、16.5%;P<0.05)。研究表明129/Sv、C3H和ICR3个品系父系遗传背景影响小鼠体细胞核移植效率,其中C3H父系遗传背景的卵母细胞可提高体细胞核移植效率。  相似文献   

4.
正卵胞浆内单精子显微注射技术(intracytoplasmic sperm injection,ICSI)是通过显微操作技术将单个精子注入卵母细胞浆内使精卵结合受精,并将受精卵体外培养形成早期胚胎植入母体子宫内的一种较为精细、尖端的辅助生殖技术。哺乳动物ICSI的研究首先在ICSI家兔的培育上获得突破性进展,随后ICSI技术先后在牛、小鼠、绵羊、马、猫、猪等动物  相似文献   

5.
不同人工处理方法激活哺乳动物卵母细胞的机理相似,但其激活效率存在差异。本研究以昆明(KM)、129/Sv×KM F1和C3H×KM F1雌鼠来源的卵母细胞为对象,利用氯化锶(SrCl2,Sr2+)联合细胞松弛素B(cytochalasin B,CB)(Sr2++CB)和离子霉素(ionomycin,Ion)联合6-二甲胺基嘌呤(6-dimethylaminopurine,6-DMAP)(Ion+6-DMAP)两种激活方法处理下对比分析不同品系小鼠卵母细胞的激活效率,并以卵母细胞原核形成率、原核数量和孤雌胚胎体外发育来评价两种激活剂的激活效率。研究结果表明,Ion+6-DMAP激活卵的1原核比率显著高于2原核(p0.05),Sr2++CB激活卵的2原核比率显著高于1原核(p0.05);KM、129/Sv×KM F1和C3H×KM F1各组孤雌胚胎卵裂率和激活率没有显著差异(P0.05),但129/Sv×KM F1和C3H×KM F1囊胚发育率显著高于KM组(p0.05)。3种小鼠品系的卵母细胞用Sr2++CB处理的孤雌胚胎发育率显著高于Ion+6-DMAP。结果证明,Sr2++CB处理小鼠卵母细胞的激活效率明显优于Ion+6-DMAP;129/Sv×KM F1和C3H×KM F1的孤雌胚胎体外发育率显著高于KM小鼠,为研究小鼠遗传背景影响孤雌胚胎发育的机理提供参考。  相似文献   

6.
本文的主要目标是建立绵羊胞内单精子注射技术(intracyioplasmic sperm injection,ICSI)。并且尝试了ICSI技术生产绵羊转基因胚胎的可能性。实验1比较了绵羊卵母细胞孤雌激活的3种化学方法。结果显示,Ionomvcin/3 h/6-dimethylaminopurine(6-DMAP)和Ionomycin激活胚的卵裂率(71.7%和91.8%)和囊胚率(17.4%和11%)显著(P<0.01)高于Ca~(2+)激活胚(18.4%和0)。Ionomycin/3 h/6-DMAP激活胚的囊胚发育形态和比例相对较高。实验2中,活精子注射至卵母细胞质后,用Ionomycin/3 h/6-DMAP激活,排出第二极体(PB2)的71枚ICSI胚胎用SOFaaBSA溶液培养,卵裂率为71.8%(51/71),显著(P<0.01)高于体外受精(41.4%,IVF)和阴性对照胚胎(30.2%,sham-ICSI)。培养7天后,sham-ICSI组没有囊胚生成;ICSI和IVF胚胎的囊胚率分别为7.0%(5/71)和16.1%(9/56),两者差异不显著(P>0.05)。这些ICSI囊胚在冷冻前后均能孵化,显示初步建立了绵羊ICSI技术。另外,我们探索了ICSI技术生产转基因胚胎的可能性,-20℃冻融1次的死精子与pEGFP-N1质粒共注射,33枚2-细胞期ICSI胚胎中,2枚可见GFP蛋白。其中1枚停止发育,另外1枚继续发育至16-细胞期,仍然可见GFP基因的表达。4枚解冻的ICSI囊胚手术移植给2只发情同期化受体绵羊,60天时,B超未见怀孕。本文初步结果表明,ICSI技术生产转基因绵羊有可能性,需深入研究。  相似文献   

7.
利用 DIG 末端标记技术和免疫组化技术分析了小鼠精子体外结合内化外源DNA的效率。试验结果表明,不同小鼠个体的精子结合外源DNA的阳性率有明显差异(P<0.01),平均为13%。利用考马斯亮蓝染色评价了小鼠精子顶体反应发生的情况,筛选出TYH培养液为较合适的体外受精液。利用小鼠体外受精技术,将体外转染GFP基因并获能的小鼠精子与成熟卵母细胞进行体外受精,受精卵进行体外培养,表达GFP胎的阳性率为4.7%。验证了精子介导制备转基因小鼠胚胎的可行性,并建立了利用精子载体法制备转基因小鼠胚胎的平台。  相似文献   

8.
9.
以体外成熟卵母细胞为材料研究了精子来源及制动处理方法、卵母细胞质量及注射后激活等因素对山羊ICSI效果的影响.结果说明,附睾头、体和尾精子ICSI后的受精率、卵裂率和桑椹胚/囊胚发育率与射出的鲜精精子都没有明显差异(p>0.05),但带下注射时附睾头和体精子的受精和发育率显著低于附睾尾和射精精子.在以4种不同方法致死的精子中,室温保存24h的死精子ICSI受精、卵裂和桑椹/囊胚率虽然低于对照组,但是明显高于其它方式致死的精子;5℃保存15天的死精子受精和发育效果最差.0.0005%Triton X-100处理精子的受精率、卵裂率和桑椹/囊胚率显著(p<0.05)高于制动对照组、不制动对照组和其它浓度组.经高渗处理法检测质量好的卵母细胞ICSI受精和胚胎发育效果显著好于质量差的卵母细胞.与对照组相比,A23187和Ionomycin/6-DMAP激活处理均显著(p<0.05)提高ICSI的受精率、卵裂率和桑椹/囊胚发育率.因此,精子在附睾内的成熟过程主要与其获得与卵质膜融合能力有关;精液保存方法对精子受精能力的损伤程度有很大差异;适当浓度的Triton X-100处理可模仿精子制动;卵母细胞质量是影响ICSI效果的重要因素;注射精子后激活卵母细胞能保证山羊ICSI的受精效果.  相似文献   

10.
以卵胞浆单精注射(intracytoplasmic sperm injection,ICSI)后废弃的未成熟人类卵母细胞(生发泡期卵母细胞(the germinal vesicle,GV)和第一次减数分裂中期卵母细胞(the metaphase,MI))为材料,使用卵母细胞体外成熟培养液培养未成熟的卵母细胞,分别在人类绒毛膜促性腺激素(human chorionic gonadotrophin,hCG)注射后45、60、84 h观察卵母细胞成熟情况.分别使用钙离子载体(calcium ionophore,CI)A23187联合6-二甲基氨基嘌呤(6-DMAP)法或精子提取物卵胞质内注射(sperm extracts intracytoplasmic injection,SEII)法两种不同的激活方法对体外成熟MII的卵母细胞进行孤雌激活,评价其体外发育潜能.MI卵子体外成熟率要显著高于GV(75.2%vs 30.6%)(P<0.01).与CI/6-DMAP法相比使用SEII/6-DMAP法在激活率(87.5%vs 70.2%)上要明显高于CI/6-DMAP法(P<0.05),但在卵裂率(65.7%vs 72.5%)和桑囊率(0%vs 5.0%)上SEII/6-DMAP法要低于CI/6-DMAP法.注射hCG 45 h组的卵母细胞激活率(91.3%vs 57.9%)、卵裂率(85.7%vs 57.9%)及桑囊率(9.5%vs 0%)均显著高于注射hCG 60 h组(P<0.01).56.8%(117/206)的ICSI废弃的未成熟卵母细胞可以在体外发育成熟,激活后具有一定的发育潜能,卵龄对卵母细胞的质量和发育能力影响较大.  相似文献   

11.
The objective of this study was to evaluate in vitro and in vivo development of porcine in vitro matured (IVM) porcine oocytes fertilised by intracytoplasmic sperm injection (ICSI) and the possibility of producing transgenic embryos and offspring with this procedure. Activated ICSI oocytes had a higher pronuclear formation than non-activated ICSI oocytes (mean 64.8+/-17.3% vs 28.5+/-3.4%, p<0.05). When the zygotes with two pronuclei were cultured to day 2, there was no difference (p<0.05) in the cleavage rate (mean 60.0+/-7.0% vs 63.3+/-12.7%) between the two groups. The blastocyst rate in the activation group was significantly higher than that in the non-activation group (mean 30.0+/-11.6% vs 4.6+/-4.2%, p<0.05). After injection of the sperm transfected with DNA/liposome complex, destabilised enhanced green fluorescent protein (d2EGFP) expression was not observed on day 2 in either cleaved or uncleaved embryos. But from day 3, some of the embryos at the 2-cell to 4-cell stage started to express d2EGFP. On day 7, about 30% of cleaved embryos, which were in the range of 2-cell to blastocyst stage, expressed d2EGFP. However, for the IVF oocytes inseminated with sperm transfected with DNA/liposome complex, and for oocytes injected with sperm transfected with DNA/liposome complex, and for oocytes injected with DNA/liposome complex following insemination with sperm not treated with DNA/liposome complex, none of the embryos expressed d2EGFP. Sixteen day 4 ICSI embryos derived from sperm not treated with DNA/liposome complex were transferred into a day 3 recipient. One recipient delivered a female piglet with normal birthweight. After transfer of the ICSI embryos derived from sperm transfected with DNA/liposome complex, none of the four recipients maintained pregnancy.  相似文献   

12.
Development of bovine oocytes after intracytoplasmic sperm injection (ICSI) was investigated. Oocytes were matured for 24-26 h in vitro and injected with isolated sperm heads. When treated with 7% ethanol (v/v) for 5 min, 71.7% of ICSI oocytes were activated as shown by the resumption of meiosis and the formation of female pronuclei. However, 41.5% of injected sperm heads remained condensed at 18-20 h after injection into the ooplasm. The incidence of decondensing sperm and that of male pronuclei at this stage were 15.1% and 26.4%, respectively. A total of 55.5% of oocytes reached the 2-cell stage following sperm head injection and 54.7% after sham-ICSI; these percentages were not significantly different from those following in vitro fertilisation (IVF) (73.1%). The percentage of 2-cell embryos reaching the 8-cell stage following ICSI was 37.5%, and 27.6% after sham-ICSI, which were significantly lower (p < 0.01) than the equivalent percentage following IVF (62.4%). The percentages of parthenogenetic embryos reaching the 2-cell, 4-cell and 8-cell stages following ICSI were 56.4%, 48.9% and 30.0%, respectively. These results indicate that the low rate of normal embryonic development of bovine oocytes following ICSI is largely due to the parthenogenetic activation of the oocytes.  相似文献   

13.
The golden hamster is the mammalian species in which intracytoplasmic sperm injection (ICSI) was first tried to produce fertilized oocytes. Thus far, however, there are no reports of full-term development of hamster oocytes fertilized by ICSI. Here we report the birth of hamster offspring following ICSI. Keys to success were 1) performing ICSI in a dark room with a small incandescent lamp and manipulating both oocytes and fertilized eggs under a microscope with a red light source and 2) injecting sperm heads without acrosomes. All oocytes injected with acrosome-intact sperm heads died within 3 h after injection, while those oocytes injected with acrosomeless sperm heads survived injection. Under illumination with red light in a dark room, the majority of the oocytes injected with acrosomeless sperm heads were fertilized normally (77%), cleaved (91%), and developed into morulae (49%). Of the 47 morulae transferred to five recipient females, nine (19%) developed to live offspring.  相似文献   

14.
This study investigated the effects on fertilized embryo development of somatic cytoplasm after its injection into intact mouse oocytes. Mature oocytes collected from female B6D2F1 mice were injected with cumulus cell cytoplasm of different volumes and from different mouse strains (B6D2F1, ICR, and C57BL/6), or with embryonic cytoplasm. After culture for 1 h, B6D2F1 sperm were injected into those oocytes by intracytoplasmic sperm injection (ICSI). The oocytes were examined for pre- and postimplantation developmental competence. Increases in the volume of the somatic cytoplasm from onefold to fourfold resulted in an impairment of blastocyst development and full-term development (28% and 7%, respectively, vs. 96% and 63%, respectively, in the control group; P < 0.01). An increase in the volume of somatic cytoplasm reduced the expression of POU5F1 (more commonly known as OCT4) in expanded blastocysts. The frequency of embryos that developed to the blastocyst stage did not differ when B6D2F1 or ICR somatic cytoplasm was injected, but injection of C57BL/6 somatic cytoplasm induced a two-cell block in embryo development. Injection of the cytoplasm from fertilized embryos did not reduce the frequency of embryos attaining full-term development. Interestingly, somatic cytoplasm significantly increased the placental weight of ICSI embryos, even the injection of onefold cytoplasm (0.20 +/- 0.02 [n = 32] vs. 0.12 +/- 0.02 in the control group [n = 87]; P < 0.01). These findings indicate that the injection of somatic cytoplasm into oocytes before ICSI causes a decrease in preimplantation development, clearly impairs full-term development, and causes placental overgrowth in fertilized embryos. To our knowledge, placental overgrowth phenotypes are only caused by interspecies hybridization and cloning, and in genetically modified mice. Here, we report for the first time that somatic cytoplasm causes abnormal placentas in fertilized embryos. This study suggests that somatic cell cytoplasmic material is one cause of the low rate of full-term development in cloned mammals.  相似文献   

15.
目的探讨不同取卵时间对兔ICSI胚胎体外发育的影响。方法采用Piezo操作系统对实验兔进行辅助体外受精。结果hCG注射后14、16、18h取卵,ICSI后的受精率分别为82.2%、75.9%和0.0%,对受精卵进行体外发育培养,桑椹胚的发育率分别为72.9%、70.0%、0.0%,囊胚的发育率分别为62.2%、53.3%、0.0%。14h和16h之间受精率、桑椹胚率、囊胚率差异不显著(P〉0.05),但是14h采卵比16h要好;18h和14h、16h之间差异显著(P〈0.05)。结论不同取卵时间影响实验兔的ICSI体外受精率及胚胎的体外发育率,hCG注射后14h取卵最有利于兔ICSI胚胎的发育。  相似文献   

16.
Intracytoplasmic sperm injection (ICSI) has been applied successfully in the treatment of male infertility in humans and in fertilization research in mice. However, the technique has had limited success in producing offspring in other species including the rabbit. The aim of this research was to test the in vitro and in vivo developmental of rabbit oocytes after ICSI. Sperm used for ICSI were collected from mature Dutch Belted buck and washed 2-3 times with PBS +0.1% polyvinyl alcohol (PVA) and then mixed with 10% polyvinyl pyrrolidone (PVP) prior to microinjection. Oocytes were collected from superovulated does 14-15 hr after hCG injection and were fertilized by microinjection of a single sperm into the ooplasm of each oocyte without additional activation treatment. After ICSI, the presumed zygotes were either cultured in KSOM +0.3% BSA for 4 days or transferred into oviducts of recipient does at the pronuclear or 2-cell stage. A high percentage of fertilization (78%, n = 114) and blastocyst development (39%) was obtained after ICSI. Control oocytes, receiving a sham injection, exhibited a lower activation rate (31%, n = 51) and were unable to develop to the blastocyst stage, suggesting that the blastocysts developed following ICSI were derived from successful fertilization rather than parthenogenetic development. A total of 113 embryos were transferred to six recipient does. Two recipients became pregnant and delivered seven live young. Our results demonstrated that rabbit oocytes can be successfully fertilized and activated by ICSI and can result in the birth of live offspring.  相似文献   

17.
小鼠精子注入兔卵母细胞受精研究   总被引:2,自引:0,他引:2  
The methods of intracytoplasmic sperm injection (ICSI) and subzonal injection (SUZI) were used to study heterologous fertilization and embryonic development between the mouse and the rabbit. Results were as follows: 1. The mouse sperm nuclei decondensed and formed pronuclei following microinjection into cytoplasm and perivitelline space (PVS) of rabbit oocytes; 2. The hybrid embryos developed to the stage of 8-cell when cultured in vitro; 3. The karyotype analysis showed a normal complement of rabbit oocyte and mouse sperm chromosomes in the 4-cell hybrid embryos; 4. The ultrastructure of 4-cell hybrid embryos was similar to that of normal 4-cell rabbit embryos; 5. The fertilization rate (32.4%) and cleavage rate (22.2%) when 5-10 mouse spermatozoa were injected were higher than those of injection of a single spermatozoon into PVS of the rabbit oocyte, but the difference was not significant (P > 0.05). The fertilization rate (42.3%) and cleavage rate (30.8%) in rabbit oocytes in vitro matured for 11-12 h were higher than those in the oocytes which were in vitro matured for 24-25 h following microinjection of 1-2 mouse spermatozoa into PVS, but the difference was not significant (P > 0.05).  相似文献   

18.
The objective was to assess the ability of testicular spermatozoa to fertilize in vitro matured domestic cat oocytes and support blastocyst formation in vitro following intra-cytoplasmic sperm injection (ICSI). After IVM, oocytes were randomly and equally allocated among treatment groups (ICSI with testicular spermatozoa, ICSI with ejaculated spermatozoa, sham ICSI, and control IVF). At 18 h after either injection or insemination, the percentage of fertilized oocytes (per total metaphase II oocytes) was approximately 65% after ICSI with testicular or ejaculated spermatozoa (P > 0.05), which was less (P < 0.05) than control IVF (approximately 90%). On Day 7, the percentage of cleaved embryos (per total metaphase II oocytes) was approximately 60% after ICSI with testicular or ejaculated spermatozoa (P > 0.05), which also was less (P < 0.05) than control IVF (approximately 85%). After ICSI with testicular spermatozoa, the percentage of blastocysts (per total cleaved embryos) was approximately 11.0%, which was less (P < 0.05) than ICSI with ejaculated spermatozoa (approximately 21.0%); the latter was less (P < 0.05) than control IVF (approximately 43.0%). No blastocyst formation was observed after sham ICSI. For the first time in the domestic cat, this study demonstrated the fertilizing ability and developmental potential of intra-testicular spermatozoa delivered directly into intra-ovarian oocytes matured in vitro.  相似文献   

19.
Archiving of mouse stocks by cryopreservation of sperm has great potential, because it is simple, rapid, and cheap. However, for some of the most commonly used inbred strains, including C57BL/6J, the postthaw fertility of the sperm (0%-12%) is too low to be useful without recourse to zona nicking or intracytoplasmic sperm injection to aid penetration of the zona pellucida. In the present study, nonmotile sperm and cell debris were removed from thawed suspensions of C57BL/6J mouse sperm, and the remaining, largely progressively motile sperm were used for in vitro fertilization. These sperm fertilized 38%-88% of denuded, zona-intact eggs, and when 2-cell embryos were transferred to pseudopregnant recipient mice, 40%-63% produced live-born young. The production of 2-cell embryos and the birth of live pups at these rates indicate that cryopreservation of sperm is a practical way to archive the haploid genome of genetically altered C57BL/6J mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号