首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine 171 in the GABA(A) receptor gamma2 subunit is highly conserved in the ligand-gated ion channel superfamily. In this paper, we report that mutating serine 171 within gamma2 to glycine or cysteine prevents the interaction of gamma2 with alpha2 and beta1 when these subunits are co-expressed in human embryo kidney 293 cells, resulting in intracellular retention of gamma2. Structure analysis based on a three-dimensional homology model of gamma2 (Ernst, M., Brauchart, D., Boresch, S., and Sieghart, W. (2003) Neuroscience 119, 933-943) reveals that serine 171 may play a critical role in the formation and stabilization of an exposed turn structure that is part of the subunit interaction site. Mutation of serine 171 in the gamma2 subunit could therefore result in alteration of the structure of the subunit interaction site, preventing correct subunit assembly.  相似文献   

2.
Hepatocyte growth factor like/macrophage stimulating protein (HGFl/MSP) and hepatocyte growth factor/scatter factor (HGF/SF) define a distinct family of vertebrate-specific growth factors structurally related to the blood proteinase precursor plasminogen and with important roles in development and cancer. Although the two proteins share a similar domain structure and mechanism of activation, there are differences between HGFl/MSP and HGF/SF in terms of the contribution of individual domains to receptor binding. Here we present a crystal structure of the 30 kDa beta-chain of human HGFl/MSP, a serine proteinase homology domain containing the high-affinity binding site for the RON receptor. The structure describes at 1.85 Angstrom resolution the region of the domain corresponding to the receptor binding site recently defined in the HGF/SF beta-chain, namely the central cleft harboring the three residues corresponding to the catalytic ones of active proteinases (numbers in brackets define the sequence position according to the standard chymotrypsinogen numbering system) [Gln522 (c57), Gln568 (c102) and Tyr661 (c195)] and an adjacent loop flanking the S1 specificity pocket and containing residues Asn682 (c217) and Arg683 (c218) previously shown to be essential for binding of HGFl/MSP to the RON receptor. The study confirms the concept that the serine proteinase homology domains of HGFl/MSP and HGF/SF bind their receptors in an 'enzyme-substrate' mode, reflecting the common evolutionary origin of the plasminogen-related growth factors and the proteinases of the clotting and fibrinolytic pathways. However, analysis of the intermolecular interactions in the crystal lattice of beta-chain HGFl/MSP fails to show the same contacts seen in the HGF/SF structures and does not support a conserved mode of dimerization of the serine proteinase homology domains of HGFl/MSP and HGF/SF responsible for receptor activation.  相似文献   

3.
Munshi UM  Pogozheva ID  Menon KM 《Biochemistry》2003,42(13):3708-3715
The elucidation of the role of highly conserved polar amino acids in the transmembrane helices of G-protein-coupled receptors (GPCRs) is important in understanding the mechanism of receptor activation. To this end, the significance of a highly conserved serine residue in the third transmembrane alpha-helix (TM3) of the luteinizing hormone/human chorionic gonadotropin receptor (LH/hCGR) in regulating receptor activation was examined. Results showed that mutation of serine 431 to alanine (S431A) decreased the ability of the receptor to mediate cAMP production in response to hCG, suggesting that S431 stabilizes the active state of the receptor. Homology with other GPCRs suggests that S431 may participate in the coordination of a Na(+) ion. Since Na(+) has been found to stabilize the active state of the receptor in the presence of hCG, the possibility that S431 promotes receptor activation by mediating the effects of Na(+) was explored. Results showed that the regulation of hormone-induced receptor activation by S431 was independent of Na(+). A rhodopsin-based homology model of the TM region of the LH/hCGR was developed to identify other amino acids that might mediate the effects of Na(+) on receptor function. Results indicate that substitution of an Asp at position 556 with Tyr alters the ability of Na(+) to regulate receptor activation. The homology model is used to explain this result as well as to identify a mechanism through which S431 may regulate receptor signaling. Taken together, these studies provide novel insights into the mechanism of LH/hCG receptor activation.  相似文献   

4.
Several serines present in transmembrane domain V are conserved among members of the G-protein-coupled receptor family that bind catecholamines. Two of these serines that are present in the beta-adrenergic receptor were previously shown by site-directed mutagenesis to affect agonist binding and receptor activation (Strader, C. D., Candelore, M. R., Hill, W. S., Sigal, I. S., and Dixon, R. A. F. (1989) J. Biol. Chem. 264, 13572-13578). We investigated the role of the serines present in transmembrane V of another catecholamine receptor, the dopamine D1 receptor, by site-directed mutagenesis, and the results show that mutations at serines 198, 199, and 202 affect dopamine binding. The substitution of serine 198 or serine 199 by an alanine also affects the binding of several other agonist and antagonist dopaminergic compounds while an alanine substitution at serine 202 has no effect on the binding of these compounds. Moreover, each single serine mutation decreased the maximal cAMP accumulation elicited by a dopamine D1 partial agonist. These results suggest that serines present in transmembrane V of the D1 receptor affect ligand interactions and receptor signal transduction, but not entirely in the manner that would be predicted from the model proposed for the beta-adrenergic receptor.  相似文献   

5.
The primary structure of the so-called histoaspartic protease from Plasmodium falciparum has a very high percentage of identity and homology with the pepsin-like enzyme plasmepsin II. A homology modeling approach was used to calculate the three-dimensional structure of the enzyme. Molecular dynamics (MD) simulations were applied to find those structural properties of the histoaspartic protease that had a tendency to remain stable during all runs. The results have shown that hydrogen-bonded residues Ser37-His34-Asp214 are arranged without any strain, in a manner that resembles the active site of a serine protease, while Ser38 and Asn39 take up positions appropriate to formation of an oxyanion hole. Although there are several important differences between the enzyme and plasmepsin II, all of the structural features associated with a typical pepsin-like aspartic protease are present in the final model of the histoaspartic protease. A possibility that this enzyme may function as a serine protease is discussed.  相似文献   

6.
The mechanisms that regulate the transport of the macrophage class A scavenger receptor during ligand uptake were investigated. Kinetic analysis of the changes in receptor phosphorylation demonstrated that serine phosphorylation increased during the internalization of acetyl-low density lipoproteins (LDL) by macrophages. The increase was maximal at about 2.5 min after the initiation of ligand uptake. Oxidized LDL also stimulated serine phosphorylation, but the relative increase was smaller and the time to maximum was shorter. Receptor mutants expressed in Chinese hamster ovary and COS cells showed that elimination of the potential phosphorylation site at Ser(21) increased acetyl-LDL metabolism, whereas inactivation of the site at Ser(49) reduced acetyl-LDL uptake. The increase in uptake by the Ser(21) mutant was due to an increase in surface receptor expression. In contrast, elimination of the site at Ser(49) did not affect receptor expression but slowed receptor internalization. To identify potential internalization signal sequences, beta-turn structure in the cytosolic domain was targeted for mutagenesis. Disruption of one region near Asp(25) inhibited receptor activity. The studies support a model whereby receptor internalization requires the presence of an internalization signal motif but that the rate of receptor internalization is governed by the pattern of receptor phosphorylation induced by the ligand.  相似文献   

7.
The cDNA encoding BthaTL, a serine peptidase from the venom of the snake Bothrops alternatus, was cloned and sequenced. The deduced primary structure shows over 62% of identity with snake venom thrombin-like enzymes (SVTLEs), molecules with high substrate specificity toward different natural substrates. Indeed, a phylogenetic reconstruction by two different methods clustered this enzyme close to other SVTLEs. These enzymes generally affect the hemostatic system in several ways, and therefore are used as tools in pharmacology and clinical diagnosis. A three-dimensional model of BthaTL was built by homology modeling using TSV-PA (Trimeresurus stejnegeri venom plasminogen activator) crystal structure as template. BthaTL model showed that the typical catalytic triad conformation of serine peptidases was preserved. The calcium coordination ligands were absent or adopt an unfavorable conformation, preventing interactions with metals. On the other hand, the Asp97-Arg174 saline bridge of TSV-PA was not found and its specificity determinant Phe193 is replaced by a Gly in BthaTL. The substitution of essential residues in the neighborhoods of the catalytic site cleft of BthaTL indicates that these two proteins do not share the same enzymatic specificity, what means that BthaTL will probably not activate plasminogen. Such observations may be helpful in the understanding of the molecular mechanism for substrate specificity of these enzymes.  相似文献   

8.
The following amino acid sequence of the small cyanogen bromide peptide (mol. wt. 5399) of thermitase from Thermoactinomyces vulgaris has been determined: Ala-Thr-Pro-His-Val-Ala-Gly-Val-Ala-Gly-Leu-Leu-Ala-Ser-Gln-Gly-Arg-Ser-Ala-Ser -Asn-Ile-Arg-Ala-Ala-Ile-Glu-Asn-Thr-Ala-Asp-Lys-Ile-Ser-Gly-Thr-Gly-Thr-Tyr-Trp-Ala-Lys-Gly-Arg-Val-Asn-Ala-Tyr-Lys-Ala-Val-Gln-Tyr. The results obtained support the classification of the enzyme as a serine proteinase of the subtilisin type as proposed in a previous paper (1). This partial sequence extending from the serine residue involved in the active site to the C-terminal amino acid of the enzyme shows a 40% homology with the corresponding part of the subtilisin BPN' or subtilisin Carlsberg molecule but a 56% homology as regards conservative amino acid replacements. The secondary structure of this polypeptide fragment, predicted from the data obtained by the method of Chou & Fasman (2) agrees fairly well, within the limit or error of the method, with the structure of the corresponding part of the subtilisin BPN' molecule. Therefore, as expected, no dramatic changes in the spatial structure appear to account for the higher thermostability of thermitase, at least in this area of the polypeptide chain.  相似文献   

9.
Daga PR  Zaveri NT 《Proteins》2012,80(8):1948-1961
The opioid receptor-like receptor, also known as the nociceptin receptor (NOP), is a class A G protein-coupled receptor (GPCR) in the opioid receptor family. Although NOP shares a significant homology with the other opioid receptors, it does not bind known opioid ligands and has been shown to have a distinct mechanism of activation compared to the closely related opioid receptors mu, delta, and kappa. Previously reported homology models of the NOP receptor, based on the inactive-state GPCR crystal structures, give limited information on the activation and selectivity features of this fourth member of the opioid receptor family. We report here the first active-state homology model of the NOP receptor based on the opsin GPCR crystal structure. An inactive-state homology model of NOP was also built using a multiple template approach. Molecular dynamics simulation of the active-state NOP model and comparison to the inactive-state model suggest that NOP activation involves movements of transmembrane (TM)3 and TM6 and several activation microswitches, consistent with GPCR activation. Docking of the selective nonpeptidic NOP agonist ligand Ro 64-6198 into the active-state model reveals active-site residues in NOP that play a role in the high selectivity of this ligand for NOP over the other opioid receptors. Docking the shortest active fragment of endogenous agonist nociceptin/orphaninFQ (residues 1-13) shows that the NOP extracellular loop 2 (EL2) loop interacts with the positively charged residues (8-13) of N/OFQ. Both agonists show extensive polar interactions with residues at the extracellular end of the TM domain and EL2 loop, suggesting agonist-induced reorganization of polar networks, during receptor activation.  相似文献   

10.
Schneider M  Wolf S  Schlitter J  Gerwert K 《FEBS letters》2011,585(22):3587-3592
Most of the currently available G protein-coupled receptor (GPCR) crystal structures represent an inactive receptor state, which has been considered to be suitable only for the discovery of antagonists and inverse agonists in structure-based computational ligand screening. Using the β(2)-adrenergic receptor (B2AR) as a model system, we show that a dynamic homology model based on an "active" opsin structure without further incorporation of experimental data performs better than the crystal structure of the inactive B2AR in finding agonists over antagonists/inverse agonists. Such "active-like state" dynamic homology models can therefore be used to selectively identify GPCR agonists in in silico ligand libraries.  相似文献   

11.
Amino acid sequence of human D of the alternative complement pathway   总被引:4,自引:0,他引:4  
The primary structure of human D, the serine protease activating the C3 convertase of the alternative complement pathway, has been deduced by sequencing peptides derived from various chemical (CNBr and o-iodosobenzoic acid) and enzymatic (trypsin, lysine protease, Staphylococcus aureus V8 protease, and chymotrypsin) cleavages. Carboxypeptidase A was also used to confirm the COOH-terminal sequence. The peptides were purified by high-pressure liquid chromatography. The proposed sequence of human D contains 222 amino acids and has a calculated molecular weight of 23 748. It exhibits a high degree of homology with other serine proteases, especially around the NH2-terminus as well as the three residues corresponding to the active-site His-57, Asp-102, and Ser-195 (chymotrypsinogen numbering). This sequence homology is highest (40%) with plasmin, intermediate (35%) with pancreatic serine proteases, such as elastase, trypsin, chymotrypsin, and kallikrein, and least (30%) with the serum enzymes thrombin and factor X. D, however, exhibits only minimal amino acid homology with the other sequenced complement serine proteases, Clr (25%) and Bb (20%). The substitution of a basic lysine for a neutral amino acid three residues NH2-terminal to the active-site serine as well as a small serine residue for a bulky aromatic amino acid at position 215 (chymotrypsinogen numbering) in the binding pocket may be important in determining the exquisite substrate specificity of D. The presence of His-40 which interacts with Asp-194 (chymotrypsinogen numbering) to stabilize other serine protease zymogens [Freer, S. T., Kraut, J., Robertus, J. D., Wright, H. T., & Xuong, N. H. (1970) Biochemistry 9, 1997] argues in favor of such a D precursor molecule.  相似文献   

12.
Summary A fast dynamic programming algorithm for the spatial superposition of protein structure without prior knowledge of an initial alignment has been developed. The program was applied to serine proteases, hemoglobins, cytochromes C, small copper-binding proteins, and lysozymes. In most cases the existing structural homology could be detected in a completely unbiased way. The results of the method presented are in general agreement with other studies. Applying our method, the different alignment results obtained by other authors for serine proteases and cytochromes C can be classified in terms of different alignment parameters such as gap penalties or cut-off length. Limitations of the method are discussed.  相似文献   

13.
A homology model of the nicotinic acid receptor GPR109A was constructed based on the X-ray crystal structure of bovine rhodopsin. An HTS hit was docked into the homology model. Characterization of the binding pocket by a grid-based surface calculation of the docking model suggested that a larger hydrophobic body plus a polar tail would improve interaction between the ligand and the receptor. The designed compounds were synthesized, and showed significantly improved binding affinity and activation of GPR109A.  相似文献   

14.
Kimura SR  Tebben AJ  Langley DR 《Proteins》2008,71(4):1919-1929
Homology modeling of G protein-coupled receptors is becoming a widely used tool in drug discovery. However, unrefined models built using the bovine rhodopsin crystal structure as the template, often have binding sites that are too small to accommodate known ligands. Here, we present a novel systematic method to refine model active sites based on a pressure-guided molecular dynamics simulation. A distinct advantage of this approach is the ability to introduce systematic perturbations in model backbone atoms in addition to side chain adjustments. The method is validated on two test cases: (1) docking of retinal into an MD-relaxed structure of opsin and (2) docking of known ligands into a homology model of the CCR2 receptor. In both cases, we show that the MD expansion algorithm makes it possible to dock the ligands in poses that agree with the crystal structure or mutagenesis data.  相似文献   

15.
We describe a model for the three-dimensional structure of E. coli serine hydroxymethyltransferase based on its sequence homology with other PLP enzymes of the alpha-family and whose tertiary structures are known. The model suggests that certain amino acid residues at the putative active site of the enzyme can adopt specific roles in the catalytic mechanism. These proposals were supported by analysis of the properties of a number of site-directed mutants. New active site features are also proposed for further experimental testing.  相似文献   

16.
The three-dimensional structure of a proteolytically modified protein C inhibitor, a member of the serine protease inhibitor superfamily, was constructed with computer graphics based on its amino acid sequence homology with that of the modified alpha 1-antitrypsin whose structure had been elucidated by X-ray crystallography. The intact form of protein C inhibitor was predicted with an alpha-carbon model based on its hydrophilicity and hydrogen bond pattern. Furthermore, a model of its interaction with activated protein C was constructed based on the structure of the complex between trypsin and its inhibitor, which had been determined by X-ray crystallography.  相似文献   

17.
Low-molecular-weight urokinase (molecular weight 33100) was separated by analytical and preparative isoelectric focusing into five major subforms with isoelectric points between 8.7 and 9.6. These subforms are very similar in molecular weight, specific activity, amino acid composition and content of amino sugar and their N-terminal sequence constellation is identical. Low-molecular-weight urokinase consists of two polypeptide chains connected by a single disulfide bridge. The N-terminal region of the heavy chain (calculated Mr 30700) exhibits homology within the first 46 residues analyzed, with the known primary structure of other serine proteases. The mini chain (Mr 2426), whose complete sequence was determined, consists of 21 residues which show homology with the primary structure of the C-terminal region of the plasmin heavy chain. Based on sequence data and homology criteria with serine proteases a single-chain urokinase precursor is postulated having a peptide bond constellation between heavy and light chain region compatible with the requirements for serine protease activation.  相似文献   

18.
Peptidoglycan recognition proteins (PGRPs) form a recently discovered protein family, which is conserved from insect to mammals and is implicated in the innate immune system by interacting with/or degrading microbial peptidoglycans (PGNs). Drosophila PGRP-SA is a member of this family of pattern recognition receptors and is involved in insect Toll activation. We report here the crystal structure of PGRP-SA at 1.56 A resolution, which represents the first example of a "recognition" PGRP. Comparison with the catalytic Drosophila PGRP-LB reveals an overall structure conservation with an L-shaped hydrophilic groove that is likely the PGN carbohydrate core binding site, but further suggests some possible functional homology between recognition and catalytic PGRPs. Consistent with sequence analysis, PGRP-SA does not contain the canonical zinc-binding residues found in catalytic PGRPs. However, substitution of the zinc-binding cysteine residue by serine, along with an altered coordinating histidine residue, assembles a constellation of residues that resembles a modified catalytic triad. The serine/histidine juxtaposition to a threonine residue and a carbonyl oxygen atom, along with conservation of the catalytic water molecule found in PGRP-LB, tantalizingly suggests some hydrolytic function for this member of receptor PGRPs.  相似文献   

19.
DNA topoisomerases are ubiquitous enzymes that govern the topological interconversions of DNA thereby playing a key role in many aspects of nucleic acid metabolism. Recently determined crystal structures of topoisomerase fragments, representing nearly all the known subclasses, have been solved. The type IB enzymes are structurally distinct from other known topoisomerases but are similar to a class of enzymes referred to as tyrosine recombinases. A putative topoisomerase I open reading frame from the kinetoplastid Leishmania donovani was reported which shared a substantial degree of homology with type IB topoisomerases but having a variable C-terminus. Here we present a molecular model of the above parasite gene product, using the human topoisomerase I crystal structure in complex with a 22 bp oligonucleotide as a template. Our studies indicate that the overall structure of the parasite protein is similar to the human enzyme; however, major differences occur in the C-terminal loop, which harbors a serine in place of the usual catalytic tyrosine. Most other structural themes common to type IB topoisomerases, including secondary structural folds, hinged clamps that open and close to bind DNA, nucleophilic attack on the scissile DNA strand and formation of a ternary complex with the topoisomerase I inhibitor camptothecin could be visualized in our homology model. The validity of serine acting as the nucleophile in the case of the parasite protein model was corroborated with our biochemical mapping of the active site with topoisomerase I enzyme purified from L.donovani promastigotes.  相似文献   

20.
Hyperglycemia and impaired insulin signaling are considered as major factors in the retinal pathology in diabetic retinopathy (DR). Numerous reports support that these two factors damage retinal glial as well as neuronal cells early in diabetes. However, it is not known whether diabetic induced hyperglycemia causes a depression to the insulin signaling. In this study we utilized a well characterized cultured Muller cells (TR-MUL) where we found a high expression of insulin receptor molecules. TR-MUL Cells were treated with high glucose, glutamate and hydrogen peroxide, and activated with insulin. Following treatments, cell lysates were analyzed by immunoblotting experiments for insulin receptor (IRβ) and insulin receptor substrate (IRS1). In addition, cell lysates were immunoprecipitated using antibodies against insulin receptor proteins to analyze tyrosine phosphorylation and serine phosphorylation of insulin receptor proteins. Results indicate that hyperglycemia did not affect the expression of insulin receptor proteins in cultured TR-MUL cells. Although, hyperglycemia seems to inhibit the interaction between IRS1 and IRβ. Hydrogen peroxide increased the tyrosine phosphorylation of insulin receptor proteins but excess glutamate could not affect the insulin receptor proteins indicating that glutamate may not cause oxidative stress in TR-MUL cells. Hyperglycemia lowered serine phosphorylation of IRSser632 and IRSser1101 however, IRSser307 was not affected. Thus, hyperglycemia may not affect insulin signaling through tyrosine phosphorylation of insulin receptor proteins but may inhibit the interactions between insulin receptor proteins. Hyperglycemia induced phosphorylation of various serine residues of IRS1 and their influence on insulin signaling needs further investigation in TR-MUL cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号