首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
beta-glucocerebrosidase, the enzyme defective in Gaucher disease, is targeted to the lysosome independently of the mannose-6-phosphate receptor. Affinity-chromatography experiments revealed that the lysosomal integral membrane protein LIMP-2 is a specific binding partner of beta-glucocerebrosidase. This interaction involves a coiled-coil domain within the lumenal domain. beta-glucocerebrosidase activity and protein levels were severely decreased in LIMP-2-deficient mouse tissues. Analysis of fibroblasts and macrophages isolated from these mice indicated that the majority of beta-glucocerebrosidase was secreted. Missorting of beta-glucocerebrosidase was also evident in vivo, as protein and activity levels were significantly higher in sera from LIMP-2-deficient mice compared to wild-type. Reconstitution of LIMP-2 in LIMP-2-deficient fibroblasts led to a rescue of beta-glucocerebrosidase levels and distribution. LIMP-2 expression also led to lysosomal transport of a beta-glucocerebrosidase endoplasmic reticulum retention mutant. These data support a role for LIMP-2 as the mannose-6-phosphate-independent trafficking receptor for beta-glucocerebrosidase.  相似文献   

2.
Lysosomal acid beta-glucocerebrosidase hydrolyzes glucocerebroside to glucose ceramide. Patients diagnosed with Gaucher disease, however, lack this enzyme, leading to the accumulation of glucocerebroside in tissue macrophages within multiple organs. Such patients can receive enzyme replacement therapy during which a human placental-derived or recombinant form of acid beta-glucocerebrosidase is targeted to the macrophages. As part of evaluating the effectiveness of such therapies, currently available methodologies for measuring acid beta-glucocerebrosidase activity are primarily conducted in cultured cell lines or tissue culture. However, these in vitro assays are limited by their ability to evaluate the efficacy of in vivo acid beta-glucocerebrosidase replacement therapy in animal models. In particular, there is an unmet need to simultaneously define cellular localization and evaluate enzyme activity following treatment in vivo. In addition, results of commonly used fluorescent-based assays for enzyme activity are difficult to compare day to day and/or across laboratories due to the variability inherent in flow cytometric measurement. In this article, we describe a reproducible and consistent quantitative method for the combined measurement of fluorescein intensity from enzyme-substrate conversion and cell localization by phenotype-specific phycoerythrin-antibody staining. Following infusion of recombinant human acid beta-glucocerebrosidase in mice, nonparenchymal cells are prepared from the livers of treated and control animals. Acid beta-glucocerebrosidase activity is measured in molecules of equivalent soluble fluorophore units within Kupffer cell populations as defined by phenotype-specific monoclonal antibodies. This assay should be applicable to investigations of other Gaucher disease treatments in both human and animal models.  相似文献   

3.
BACKGROUND: Gaucher disease is a common glycolipid storage disease, caused by a deficiency of lysosomal beta-glucosidase (glucocerebrosidase). Alglucerase is a form of glucocerebrosidase enriched with terminal mannose moieties, so as to "target" the preparation to the high-affinity macrophage receptor in patients with Gaucher disease. Our earlier in vitro studies indicated that alglucerase was bound by cells other than macrophages by a widely distributed, low-affinity mannose receptor. MATERIALS AND METHODS: Bone was removed at surgery from six patients with Gaucher disease; in three cases, bone was obtainable both when the patient was untreated and after receiving an infusion of alglucerase. Four samples of bone were obtained from patients without Gaucher disease and served as controls. A bone marrow aspirate was obtained from another patient with Gaucher disease immediately after enzyme infusion. Marrow beta-glucosidase activity and chitotriosidase (a macrophage marker) was determined on all samples. RESULTS: Even with the large bolus doses used for the treatment of Gaucher disease by some, scarcely any beta-glucosidase activity was found in marrow samples; the amount of the enzyme was much less than would have been anticipated had the enzyme been evenly distributed to all body cells. CONCLUSIONS: Alglucerase is not targeted to marrow macrophages. Its unquestioned therapeutic effectiveness must be due either to its activity at some site other than marrow macrophages or to the fact that the doses administered are so enormous that even a small fraction is sufficient to achieve a therapeutic effect.  相似文献   

4.
Substrate reduction therapy: clinical evaluation in type 1 Gaucher disease   总被引:4,自引:0,他引:4  
Glycosphingolipid (GSL) lysosomal storage disorders are inherited enzyme deficiencies that result in pathological lysosomal accumulation of glycolipids, with widespread clinical consequences. Type 1 Gaucher disease is the commonest of these; the deficient enzyme in this condition is glucocerebrosidase. Clinical manifestations include hepatosplenomegaly, thrombocytopenia, anaemia, recurrent infections and skeletal lesions. The condition can be treated with intravenous enzyme replacement therapy (ERT). Substrate reduction therapy is a new approach in which glycolipid accumulation is counteracted not by replacing the deficient enzyme but by reducing the substrate level to better balance residual activity of the deficient enzyme. Miglustat is an inhibitor of glucosylceramide synthase, a key enzyme in GSL synthesis. Oral administration of miglustat to patients with type 1 Gaucher disease attenuates the synthesis of glucocerebroside, the substrate of the deficient glucocerebrosidase. In the first clinical study, patients with type 1 Gaucher disease who had enlargement of the liver or spleen and (if present) the spleen at baseline received 12 months treatment with oral miglustat. There were mean decreases in liver and spleen volumes of 12% (7.9-16.4, p < 0.001) and 19% (14.3-23.7, p < 0.001), respectively. Mean haemoglobin increased by 0.26 g dl(-1) (-0.5-0.57, not statistically significant) and platelet count by 8.3 x 10(9) l(-1) (1.9-14.7, p = 0.014).  相似文献   

5.
Doering T  Proia RL  Sandhoff K 《FEBS letters》1999,447(2-3):167-170
The epidermal permeability barrier for water is essentially maintained by extracellular lipid membranes within the interstices of the stratum corneum. Ceramides, the main components of these membranes, derive in large part from hydrolysis of glucosylceramides mediated by the lysosomal enzyme beta-glucocerebrosidase. As analyzed in this work, the beta-glucocerebrosidase deficiency in type 2 Gaucher mice (RecNci I) resulted in an accumulation of all epidermal glucosylceramide species accompanied with a decrease of the related ceramides. However, the levels of one ceramide subtype, which possesses an alpha-hydroxypalmitic acid, was not altered in RecNci I mice suggesting that the beta-glucocerebrosidase pathway is not required for targeting of this lipid to interstices of the stratum corneum. Most importantly, omega-hydroxylated glucosylceramides which are protein-bound to the epidermal cornified cell envelope of the transgenic mice accumulated up to 35-fold whereas levels of related protein-bound ceramides and fatty acids were decreased to 10% of normal control. These data support the hypothesis that in wild-type epidermis omega-hydroxylated glucosylceramides are first transferred enzymatically from their linoleic esters to proteins of the epidermal cornified cell envelope and then catabolized to protein-bound ceramides and fatty acids, thus contributing at least in part to the formation of the lipid-bound envelope.  相似文献   

6.
Activator protein (AP), which stimulated fibroblast sphingomyelinase activity, was isolated from the spleen of a patient with Gaucher's disease type I by the combined techniques of heat and alcohol denaturation, DEAE-cellulose column chromatography, gel filtration, preparative polyacrylamide-gel electrophoresis and decyl-agarose chromatography. Urea/sodium dodecyl sulphate (SDS)/polyacrylamide-gel electrophoresis showed two bands, one with an Mr of approx. 3,000 and the other with an Mr of 5,000-6,500. Similarly, SDS/polyacrylamide-gel electrophoresis performed in the absence of urea revealed the presence of two components, one of which adsorbed to a concanavalin A (Con A) column. Both components stimulated sphingomyelinase activity. On a non-denaturing polyacrylamide gel containing Triton X-100, four major components, two of which bound to Con A, were detected with the dye Stains-All. Cross-reacting material (CRM) to polyclonal Gaucher spleen AP antibodies was detected in normal fibroblasts and in fibroblasts from patients with sphingomyelinase and beta-glucocerebrosidase deficiency states (Niemann-Pick and Gaucher's diseases respectively). CRM in normal fibroblasts adsorbed to Con A columns and had the same mobility on SDS/polyacrylamide-gel electrophoresis as Con A-adsorbing Gaucher spleen AP. Normal AP was not observed in mucolipidosis type II (I-cell disease) fibroblasts; instead, extracts from these cells revealed the presence of two closely migrating bands with higher Mr values than normal fibroblast CRM. Furthermore, extracts of media from I-cell fibroblast cultures, but not from control or Gaucher fibroblast cultures, contained AP activity towards sphingomyelinase and beta-glucocerebrosidase. Fibroblasts from a patient with mucolipidosis type III (pseudo-Hurler polydystrophy) showed an intermediate pattern consisting of normal as well as the higher-Mr CRM. Our data provide evidence for the existence of AP in cultured skin fibroblasts and suggest that these proteins may be targetted to the lysosome by post-translational modification in a similar manner to that reported for lysosomal enzymes.  相似文献   

7.
Mutations in the gene that encodes the lysosomal enzyme acid β-glucosidase lead to reduced cellular activity and accumulation of glycosphingolipid substrates, biochemical hallmarks of the lysosomal storage disorder Gaucher disease (GD). Recently such mutations have been identified as risk factors for Parkinson’s disease (PD) and related disorders. Both gain-of-function (due to toxic cellular accumulation of mutant enzyme) and loss-of-function (due to accumulation of lipid substrates) hypotheses have been put forth to address the biochemical link between GD and PD. Similarly, links between Alzheimer’s disease and other lysosomal enzyme deficiencies have begun to emerge. The use of pharmacological chaperones to restore the cellular trafficking and activity of mutant lysosomal enzymes may offer a novel approach to treat these debilitating neurodegenerative diseases.  相似文献   

8.
The most common lysosomal storage disorder, Gaucher disease, is caused by inefficient folding and trafficking of certain variants of lysosomal beta-glucosidase (beta-Glu, also known as beta-glucocerebrosidase). Recently, Sawker et al. reported that the addition of subinhibitory concentrations (10 microM) of the pharmacological chaperone N-nonyl-1-deoxynojirimycin (NN-DNJ) (10) to Gaucher patient-derived cells leads to a 2-fold increase in activity of mutant (N370S) enzyme [Proc. Natl. Acad. Sci. U.S.A.2002, 99, 15428]. However, we found that the addition of NN-DNJ at 10 microM lowered the lysosomal alpha-glucosidase (alpha-Glu) activity by 50% throughout the assay period in spite of the excellent chaperoning activity in N370S fibroblasts. Hence, we prepared a series of DNJ derivatives with an alkyl chain at the C-1alpha position and evaluated their in vitro inhibitory activity and potential as pharmacological chaperones for Gaucher cell lines. Among them, alpha-1-C-octyl-DNJ (CO-DNJ) (15) showed 460-fold stronger in vitro inhibitory activity than DNJ toward beta-Glu, while NN-DNJ enhanced in vitro inhibitory activity by 360-fold. Treatment with CO-DNJ (20 microM) for 4 days maximally increased intracellular beta-Glu activity by 1.7-fold in Gaucher N370 cell line (GM0037) and by 2.0-fold in another N370 cell line (GM00852). The addition of 20 microM CO-DNJ to the N370S (GM00372) culture medium for 10 days led to 1.9-fold increase in the beta-Glu activity without affecting the intracellular alpha-Glu activity for 10 days. Only CO-DNJ showed a weak beta-Glu chaperoning activity in the L444P type 2 variant, with 1.2-fold increase at 5-20 microM, and furthermore maximally increased the alpha-Glu activity by 1.3-fold at 20 microM. These experimental results suggest that CO-DNJ is a significant pharmacological chaperone for N370S Gaucher variants, minimizing the potential for undesirable side effects such as alpha-Glu inhibition.  相似文献   

9.
A series of man-Chinese hamster somatic cell hybrids with a variable content of human chromosomes was used to study the localization of the human gene coding for the lysosomal enzyme beta-glucocerebrosidase (EC 3.2.1.45). In lysates made from hybrid cells, the human enzyme was specifically recognized by a mouse monoclonal antibody raised against human placental beta-glucocerebrosidase. This monoclonal antibody did not cross-react with Chinese hamster beta-glucocerebrosidase. After reaction of the antibody with the enzyme, beta-glucocerebrosidase was precipitated by addition of Protein A-Sepharose beads, and was detected on the beads by its enzymatic activity. From the analysis of a series of man-Chinese hamster hybrids, among which were hybrids with specific segments of chromosome 1, we conclude that the gene coding for human beta-glucocerebrosidase is localized in the region q21-q31 of chromosome 1.  相似文献   

10.
The beta-glucosidase activity in spleen from control subjects and patients with different clinical phenotypes of Gaucher's disease was characterized. The occurrence of a soluble non-specific beta-glucosidase with a neutral pH optimum and two membrane-associated beta-glucocerebrosidases with an acid pH optimum was demonstrated. The two beta-glucocerebrosidases can be distinguished on the basis of their ability to react with anti-(placental beta-glucocerebrosidase) antibodies bound to protein-A--Sepharose 4B beads. One of the splenic beta-glucocerebrosidases (form I) is precipitated by the immobilized antibodies and the other (form II) is not. The two forms also differ in binding affinity to concanavalin A, degree of stimulation of enzymic activity by taurocholate and isoelectric point. In contrast, the Km values of the two beta-glucocerebrosidases for natural and artificial substrates are similar and both are inhibited by conduritol B-epoxide. In spleen from three patients with type 1, one patient with type 2 and one patient with type 3 Gaucher's disease form I beta-glucocerebrosidase was found to be clearly deficient, whereas the activity of form II was 25-50% of that in control spleen. The non-specific, neutral beta-glucosidase was not deficient in these Gaucher spleens. The distinct biochemical and immunological properties of non-specific beta-glucosidase and the fact that normal levels of the enzyme are present in patients with Gaucher's disease indicate, in confirmation of previous reports, that non-specific beta-glucosidase is not related to beta-glucocerebrosidase.  相似文献   

11.
Comparison of normal and Gaucher disease beta-glucocerebrosidase by agarose isoelectric focusing (IEF) demonstrated additional bands at the pI-6 area seen within the mutated enzyme, while both normal placenta and spleen enzyme preparations manifest only major activity at pI-5. Antiglucocerebrosidase antibodies precipitated both normal and pathological enzymes, however, more antibodies were needed to reach an equivalence with the normal enzymes than with the Gaucher's. Cross reactivity of the IEF isozymes were detected by direct immunodiffusion on the prefocused gel.  相似文献   

12.
Gaucher disease (GD), the most common lysosomal storage disorder, results from the inherited deficiency of the lysosomal enzyme glucocerebrosidase (GCase). Previously, wildtype GCase was used for high throughput screening (HTS) of large collections of compounds to identify small molecule chaperones that could be developed as new therapies for GD. However, the compounds identified from HTS usually showed reduced potency later in confirmatory cell-based assays. An alternate strategy is to perform HTS on mutant enzyme to identify different lead compounds, including those enhancing mutant enzyme activities. We developed a new screening assay using enzyme extract prepared from the spleen of a patient with Gaucher disease with genotype N370S/N370S. In tissue extracts, GCase is in a more native physiological environment, and is present with the native activator saposin C and other potential cofactors. Using this assay, we screened a library of 250,000 compounds and identified novel modulators of mutant GCase including 14 new lead inhibitors and 30 lead activators. The activities of some of the primary hits were confirmed in subsequent cell-based assays using patient-derived fibroblasts. These results suggest that primary screening assays using enzyme extracted from tissues is an alternative approach to identify high quality, physiologically relevant lead compounds for drug development.  相似文献   

13.
The physiological importance of the degradative processes in lysosomes is revealed by the existence of at least 40 distinct inherited diseases, the so-called lysosomal storage disorders. Most of these diseases are caused by a deficiency in a single lysosomal enzyme, or essential cofactor, and result in the lysosomal accumulation of one, or sometimes several, natural compounds. The most prevalent subgroup of the lysosomal storage disorders is formed by the sphingolipidoses, inherited disorders that are characterized by excessive accumulation of one or multiple (glyco)sphingolipids. The biology of glycosphingolipids has been extensively discussed in other contributions during this symposium. This review will therefore focus in depth on (type 1) Gaucher disease, a prototypical glycosphingolipidosis. The elucidation of the primary genetic defect, being a deficiency in the lysosomal glucocerebrosidase, is described. Characterization of glucocerebrosidase at protein and gene level has subsequently opened avenues for therapeutic intervention. The development of successful enzyme replacement therapy for type 1 Gaucher disease is discussed. Attention is also paid to the alternative approach of substrate modulation using orally administered inhibitors of glucosylceramide synthesis. Novel developments about the monitoring of age of onset, progression and correction of disease are described. The remaining challenges about pathophysiology of glycosphingolipidoses are discussed in view of further improvements in therapy for these debilitating disorders.  相似文献   

14.
15.
Using electron microscopic immunocytochemistry with gold probes, we have studied the localization of acid alpha-glucosidase, N-acetyl-beta-hexosaminidase and beta-glucocerebrosidase in cultured skin fibroblasts from control subjects and patients with mucolipidosis II (I-cell disease). In control fibroblasts, a random distribution of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase within the lysosomes was observed, whereas beta-glucocerebrosidase was found to be localized on or near the lysosomal membrane. The observations confirm the soluble character of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase and the membrane-bound character of beta-glucocerebrosidase. In I-cell fibroblasts an abnormal localization of the two soluble enzymes was found. Labeling in lysosomes was very weak, but instead, small 'presumptive' vesicles containing both enzymes were detected throughout the cytoplasm and close to the plasma membrane. These vesicles could be involved in the secretion of the two enzymes. In contrast, a normal membrane-bound lysosomal localization was observed for beta-glucocerebrosidase. It is concluded that the intracellular transport of beta-glucocerebrosidase to the lysosomes can occur even when the mannose-6-phosphate recognition system is defective. This explains the normal activity of beta-glucocerebrosidase in I-cells in contrast to the deficiency of most other lysosomal enzymes.  相似文献   

16.
Monoclonal antibodies against human beta-glucocerebrosidase   总被引:5,自引:0,他引:5  
Monoclonal antibodies were obtained against the membrane-bound lysosomal enzyme beta-glucocerebrosidase (acid beta-glucosidase), which is deficient in Gaucher's disease. BALB/c mice were immunized with homogeneous enzyme protein extracted from a sodium dodecyl sulphate/polyacrylamide gel. The mice were subsequently hyperimmunized with partially purified enzyme prior to fusion of spleen cells with myeloma cells. After fusion, 32 primary hybrid cell populations were obtained which continued to produce antibodies against beta-glucocerebrosidase after prolonged time of culture. All antibodies reacted with both native and denatured enzyme. Four primary cell populations were subcloned and the antibodies produced were characterized. The antibodies were all four of the IgG1 subclass. Three of these antibodies bind to protein A whereas one does not. The results of binding assays indicated that three of the antibodies react with the same antigenic domain (epitope 1), but the fourth with a different one (epitope 2). Probably two antigenic determinants are present in epitope 1 since one of the antibodies with specificity for epitope 1 is inactivated after iodination by the chloramine-T procedure whereas a second one is not.  相似文献   

17.
Gaucher disease, caused by pathological mutations GBA1, encodes the lysosome-resident enzyme glucocerebrosidase, which cleaves glucosylceramide into glucose and ceramide. In Gaucher disease, glucocerebrosidase deficiency leads to lysosomal accumulation of substrate, primarily in cells of the reticulo-endothelial system. Gaucher disease has broad clinical heterogeneity, and mutations in GBA1 are a risk factor for the development of different synucleinopathies. Insights into the cell biology and biochemistry of glucocerebrosidase have led to new therapeutic approaches for Gaucher disease including small chemical chaperones. Such chaperones facilitate proper enzyme folding and translocation to lysosomes, thereby preventing premature breakdown of the enzyme in the proteasome. This review discusses recent progress in developing chemical chaperones as a therapy for Gaucher disease, with implications for the treatment of synucleinopathies. It focuses on the development of non-inhibitory glucocerebrosidase chaperones and their therapeutic advantages over inhibitory chaperones, as well as the challenges involved in identifying and validating chemical chaperones.  相似文献   

18.
Enzyme replacement therapy (ERT) for Gaucher disease designed to target glucocerebrosidase (GC) to macrophages via mannose-specific endocytosis is very effective in reversing hepatosplenomegaly, and normalizing hematologic parameters but is less effective in improving bone and lung involvement and ineffective in brain. Recombinant GCs containing an in-frame fusion to the HIV-1 trans-activator protein transduction domain (TAT) were expressed in eukaryotic cells in order to obtain active, normally glycosylated GC fusion proteins for enzyme uptake studies. Despite the absence of mannose-specific endocytic receptors on the plasma membranes of various fibroblasts, the recombinant GCs with C-terminal TAT fusions were readily internalized by these cells. Immunofluorescent confocal microscopy demonstrated the recombinant TAT-fusion proteins with a mixed endosomal and lysosomal localization. Thus, TAT-modified GCs represent a novel strategy for a new generation of therapeutic enzymes for ERT for Gaucher disease.  相似文献   

19.
Summary Glucocerebroside -glucosidase (glucocerebrosidase) activity was assayed from cultured fibroblasts of normal individuals, and patients with type 1 (non-neuropathic), type 2 (acute neuropathic), and type 3 (subacute neuropathic) form of Gaucher disease. Residual glucocerebrosidase activity of patients was 8.9 to 17.4% of normal controls, and there was no clear correlation between the level of residual enzyme activity and the different clinical subtypes of the disease. When membrane-bound glucocerebrosidase activity was assayed in the presence of crude brain lipid extracts or purified phosphatidylserine, enzyme from both the normal and type 1 Gaucher fibroblasts was stimulated dramatically (35–60% by crude extracts, 85–90% by phosphatidylserine). This stimulation was not observed with fibroblast glucocerebrosidase of an infantile type 2 and two juvenile type 3 Gaucher patients. The presence of inhibitors of glucocerebrosidase in these type 2 and type 3 Gaucher cells was not detected. Contrary to the mutant enzyme from these Gaucher fibroblasts, glucocerebrosidase from fibroblasts of two adult type 3 Gaucher patients with cerebral involvement was stimulated substantially (72–85%) by phosphatidylserine. When membrane-bound glucocerebrosidase from fibroblasts of the infantile type 2 and juvenile type 3 patients was solubilized with sodium cholate (1% w/v) and delipidated, the phospholipid stimulation of enzyme activity was restored. These findings suggest that considerable clinical and biochemical heterogeneity exists among patients with neuropathic Gaucher disease and that phosphatidylserine activation cannot be used as a reliable indicator in predicting future onset of neurodegeneration in Gaucher patients. The possibility of an aberrant binding of mutant glucocerebrosidase to the lysosomal membrane in juvenile type 3 form of Gaucher disease is discussed.  相似文献   

20.
Gaucher disease (GD) and Fabry disease (FD) are two relatively common inherited glycosphingolipidoses caused by deficiencies in the lysosomal glycosidases glucocerebrosidase and alpha-galactosidase A, respectively. For both diseases enzyme supplementation is presently used as therapy. Cells and tissues of GD and FD patients are uniformly deficient in enzyme activity, but the two diseases markedly differ in cell types showing lysosomal accumulation of the glycosphingolipid substrates glucosylceramide and globotriaosylceramide, respectively. The clinical manifestation of Gaucher disease and Fabry disease is consequently entirely different and the response to enzyme therapy is only impressive in the case of GD patients. This review compares both glycosphingolipid storage disorders with respect to similarities and differences. Presented is an update on insights regarding pathophysiological mechanisms as well as recently available biochemical markers and diagnostic tools for both disorders. Special attention is paid to sphingoid bases of the primary storage lipids in both diseases. The value of elevated glucosylsphingosine in Gaucher disease and globotriaosylsphingosine in Fabry disease for diagnosis and monitoring of disease is discussed as well as the possible contribution of the sphingoid bases to (patho)physiology. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号