首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is correlated with increased monocyte migration to the brain, and the incidence of HAD among otherwise asymptomatic subjects appears to be lower in India than in the United States and Europe (1 to 2% versus 15 to 30%). Because of the genetic differences between HIV-1 strains circulating in these regions, we sought to identify viral determinants associated with this difference. We targeted Tat protein for these studies in view of its association with monocyte chemotactic function. Analyses of Tat sequences representing nine subtypes revealed that at least six amino acid residues are differentially conserved in subtype C Tat (C-Tat). Of these, cysteine (at position 31) was highly (>99%) conserved in non-subtype C viruses and more than 90% of subtype C viruses encoded a serine. We hypothesized a compromised chemotactic function of C-Tat due to the disruption of CC motif and tested it with the wild type C-Tat (CS) and its two isogenic variants (CC and SC) derived by site-directed mutagenesis. We found that the CS natural variant was defective for monocyte chemotactic activity without a loss in the transactivation property. While the CC mutant is functionally competent for both the functions, in contrast, the SC mutant was defective in both. Therefore, the loss of the C-Tat chemotactic property may underlie the reduced incidence of HAD; although not presenting conclusive evidence, this study provides the first evidence for a potential epidemiologic phenomenon associated with biological differences in the subtype C viruses.  相似文献   

3.
Melar M  Ott DE  Hope TJ 《Journal of virology》2007,81(4):1773-1785
Human immunodeficiency virus (HIV) entry into target cells requires the engagement of receptor and coreceptor by envelope glycoprotein (Env). Coreceptors CCR5 and CXCR4 are chemokine receptors that generate signals manifested as calcium fluxes in response to binding of the appropriate ligand. It has previously been shown that engagement of the coreceptors by HIV Env can also generate Ca(2+) fluxing. Since the sensitivity and therefore the physiological consequence of signaling activation in target cells is not well understood, we addressed it by using a microscopy-based approach to measure Ca(2+) levels in individual CD4(+) T cells in response to low Env concentrations. Monomeric Env subunit gp120 and virion-bound Env were able to activate a signaling cascade that is qualitatively different from the one induced by chemokines. Env-mediated Ca(2+) fluxing was coreceptor mediated, coreceptor specific, and CD4 dependent. Comparison of the observed virion-mediated Ca(2+) fluxing with the exact number of viral particles revealed that the viral threshold necessary for coreceptor activation of signaling in CD4(+) T cells was quite low, as few as two virions. These results indicate that the physiological levels of virion binding can activate signaling in CD4(+) T cells in vivo and therefore might contribute to HIV-induced pathogenesis.  相似文献   

4.
5.
6.
Shi J  Qin X  Zhao L  Wang G  Liu C 《Cellular immunology》2011,271(2):280-285
In HIV-infected subjects, B7-H1 synthesis and expression are up-regulated, and the degree of dysregulation correlates with the severity of disease. HIV-1 Tat protein, the viral transactivating factor, represents a key target for the host immune response. However, the relationship between B7-H1 and Tat protein has not been addressed. Here, we chose human endothelial cells which provide costimulatory signals sufficiently to influence T cells. We used recombinant pcDNA3.1(+)–Tat plasmid to transfect human endothelial cells ECV304 to establish stable Tat-expressed cell strain, and found that HIV-1 Tat was able to induce B7-H1 expression in ECV304 cells by Real-time PCR and flow cytometry analysis, and inhibited lymphocyte proliferation in co-culture system. Moreover, by using pharmacological inhibitor of ERK pathway, HIV-1 Tat induces B7-H1 expression via ERK/MAPK signaling pathway was corroborated. In summary, our results indicate that HIV-1 Tat could induce B7-H1 synthesis in ECV304 cells through ERK/MAPK signaling pathway.  相似文献   

7.
The production of interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor alpha (TNF-alpha) by fresh peripheral blood mononuclear cells was evaluated after exposure to human immunodeficiency virus (HIV) or purified recombinant HIV-1 envelope glycoprotein (rgp120). To exclude the role of contaminating endotoxin in this study, all media were subjected to ultrafiltration and reagents contained less than 25 pg of endotoxin per ml by Limulus assay. Under endotoxin-free conditions, no increases in IL-1 beta, IL-6, or TNF-alpha mRNA or protein were detectable in cell cultures exposed to HIV-1, HIV-2, or rgp120 (0.1 to 10 micrograms/ml), as compared with cytokine levels in mock-exposed cultures. However, concentrations of endotoxin (lipopolysaccharide) as low as 0.5 ng/ml induced significant production of mRNA and protein for these three cytokines. Preincubation of mononuclear cells with "shake" HIV-1 preparations and also mock-infected shake preparations prior to lipopolysaccharide stimulation resulted in a two- to threefold increase in IL-1 beta and TNF-alpha production. This priming effect was not observed with rgp120 (0.1 to 10 micrograms/ml) or standard HIV-1 or mock-infected supernatants, suggesting the presence of biologically active material independent of virus in the shake preparations. Our studies indicate that, in the absence of endotoxin, HIV-1, HIV-2, and HIV gp120 do not induce production of IL-1 beta, IL-6, or TNF-alpha by peripheral blood mononuclear cells.  相似文献   

8.
In this study we investigated the signaling pathways triggered by Tat in human monocyte to induce TNF-alpha. In monocytes, calcium, PKA, and PKC pathways are highly implicated in the expression of cytokine genes. Our data show that (i) extracellular calcium is required for the calcium signal initiated by Tat in the monocyte and is required for TNF-alpha production, PKC pathway is also required, whereas the PKA pathway does not seem to be involved (ii) downstream from PKC, activation of NF kappa B is essential while ERK1/2 MAP kinases, even though activated by Tat, are not directly involved in the pathway signaling leading to TNF-alpha production.  相似文献   

9.
P48 induces tumor necrosis factor and IL-1 secretion by human monocytes   总被引:3,自引:0,他引:3  
Bacterial products are potent stimulators of TNF and IL-1 release, however, the factors that regulate cytokine secretion in the absence of bacterial products are not well defined. P48 is a cytokine recently identified in the supernatant of the human null cell leukemia cell line Reh, which induces differentiation and cytolytic activity in HL-60 cells. P48 has been purified to homogeneity and is distinct from TNF-alpha TNF-beta, IFN-gamma, IL-6, and macrophage CSF. In the present study we examined the ability of P48 to stimulate cytokine release by human peripheral blood monocytes. P48 stimulated the secretion of TNF and IL-1 in a dose-dependent manner. Priming the monocytes with IFN-gamma enhanced P48-induced cytokine release but was not a requirement for secretion. Cytokine secretion was in response to P48 and was not caused by endotoxin contamination. The cytokine-inducing activity of P48 was extremely sensitive to heat treatment but could not be eliminated by using polymyxin B. Polyclonal antisera to P48 completely blocked the cytokine-inducing activity. P48 may be an important new member of the cytokine network involved in the regulation of cytokine secretion by monocytes.  相似文献   

10.
Human immunodeficiency virus type 1 Tat exerts prominent angiogenic effects which may lead to a variety of vasculopathic conditions in AIDS patients. Because endothelial cells undergo prominent cytoskeletal rearrangement during angiogenesis, we investigated the specific effects of Tat on the endothelial cell actin cytoskeleton. Glutathione S-transferase (GST)-Tat, at a level of 200 ng/ml (equivalent to 52 ng of Tat/ml), caused stress fiber disassembly, peripheral retraction, and ruffle formation in human umbilical vein endothelial cells (HUVEC) and human lung microvascular endothelial cells. At 600 ng of GST-Tat/ml (157 ng of Tat/ml), actin structures were lost, and severe cytoskeletal collapse occurred. In contrast, GST-Tat harboring mutations within either the cysteine-rich or basic domains exerted minimal effects on the endothelial cytoskeleton. HUVEC expressing a DsRed-Tat fusion protein displayed similar actin rearrangements, followed by actin collapse, whereas neighboring nontransfected cells retained normal actin structures. Because active mutants of p21-activated kinase 1 (PAK1) induce identical changes in actin dynamics, we hypothesized that Tat exerts its cytoskeletal effects through PAK1. GST-Tat activated PAK1 within 5 min, and adenovirus delivery of a kinase-dead PAK1 [PAK1(K298A)] completely prevented cytoskeletal collapse induced by GST-Tat or DsRed-Tat and also blocked downstream activation of c-Jun N-terminal kinase. Further, GST-Tat increased phosphorylation of the NADPH oxidase subunit p47(phox) and caused its rapid redistribution to membrane ruffles. PAK1(K298A) blocked p47(phox) phosphorylation, and interference with NADPH oxidase function through superoxide scavenging or through expression of a transdominant inhibitor, p67(V204A), prevented GST-Tat-induced alterations in the actin cytoskeleton. We conclude that Tat induces actin cytoskeletal rearrangements through PAK1 and downstream activation of the endothelial NADPH oxidase.  相似文献   

11.
The precise regulatory mechanisms of amplification and downregulation of the pro- and anti-inflammatory cytokines in the inflammatory response have not been fully delineated. Although activated protein C (APC) and its precursor protein C (PC) have recently been reported to be promising therapeutic agents in the management of meningococcal sepsis, direct evidence for the anti-inflammatory effect remains scarce. We report that APC inhibits in vitro the release of tumor necrosis factor (TNF) and macrophage migration inhibitory factor (MIF), two known cytokine mediators of bacterial septic shock, from lipopolysaccharide (LPS)-stimulated human monocytes. The THP-1 monocytic cell line, when stimulated with LPS and concomitant APC, exhibited a marked reduction in the release of TNF and MIF protein in a concentration-dependent manner compared to cells stimulated with LPS alone. This effect was observed only when incubations were performed in serum-free media, but not in the presence of 1-10% serum. Serum-mediated inhibition could only be overcome by increasing APC concentrations to far beyond physiological levels, suggesting the presence of endogenous serum-derived APC inhibitors. Inhibition of MIF release by APC was found to be independent of TNF, as stimulation of MIF release by LPS was unaltered in the presence of anti-TNF antibodies. Our data confirm that the suggested anti-inflammatory properties of APC are due to direct inhibition of the release of the pro-inflammatory monokine TNF, and imply that the anti-inflammatory action of APC is also mediated via inhibition of MIF release.  相似文献   

12.
The Nef protein of primate lentiviruses is a unique protein that has evolved in several ways to manipulate the biology of an infected cell to support viral replication, immune evasion, pathogenesis, and viral spread. Nef is a small (25- to 34-kDa), myristoylated protein that binds to a collection of cellular factors and acts as an adaptor to generate novel protein interactions to accomplish specific functions. Of the many biological activities attributed to Nef, the reduction of surface levels of the viral receptor (CD4) and antigen-presenting molecules (major histocompatibility complex class I) has been intensely examined; recent evidence demonstrates that Nef utilizes multiple, distinct pathways to affect these proteins. To accomplish this, Nef promotes the formation of multiprotein complexes, recruiting host adaptor proteins to commandeer intracellular vesicular trafficking routes. The altered trafficking of several other host molecules has also been reported, and an emerging theory suggests that Nef generates pleiotrophic effects in the secretory and endocytic pathways that reprogram intracellular protein trafficking and may ultimately provide an efficient platform for viral assembly. This review critically discusses some of the major findings regarding the impact of human immunodeficiency virus type 1 Nef on host protein transport and addresses some emerging directions in this area of human immunodeficiency virus biology.  相似文献   

13.
14.
15.
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 96-amino-acid protein that is found associated with the HIV-1 virion. Vpr induces cell cycle arrest at the G(2)/M phase of the cell cycle, and this arrest is followed by apoptosis. We examined the mechanism of Vpr-induced apoptosis and found that HIV-1 Vpr-induced apoptosis requires the activation of a number of cellular cysteinyl aspartate-specific proteases (caspases). We demonstrate that ectopic expression of anti-apoptotic viral proteins, which inhibit caspase activity, and addition of synthetic peptides, which represent caspase cleavage sites, can inhibit Vpr-induced apoptosis. Finally, inhibition of caspase activity and subsequent inhibition of apoptosis results in increased viral expression, suggesting that therapeutic strategies aimed at reducing Vpr-induced apoptosis in vivo require careful consideration.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) plays a crucial role in viral replication and pathogenesis by inducing cell cycle arrest, apoptosis, translocation of preintegration complex, potentiation of glucocorticoid action, impairment of dendritic cell (DC) maturation, and T-cell activation. Recent studies involving the direct effects of Vpr on DCs and T cells indicated that HIV-1 containing Vpr selectively impairs phenotypic maturation, cytokine network, and antigen presentation in DCs and dysregulates costimulatory molecules and cytokine production in T cells. Here, we have further investigated the indirect effect of HIV-1 Vpr(+) virus-infected DCs on the bystander CD8(+) T-cell population. Our results indicate that HIV-1 Vpr(+) virus-infected DCs dysregulate CD8(+) T-cell proliferation and induce apoptosis. Vpr-containing virus-infected DC-mediated CD8(+) T-cell killing occurred in part through enhanced tumor necrosis factor alpha production by infected DCs and subsequent induction of death receptor signaling and activation of the caspase 8-dependent pathway in CD8(+) T cells. Collectively, these results provide evidence that Vpr could be one of the important contributors to the host immune escape by HIV-1 through its ability to dysregulate both directly and indirectly the DC biology and T-cell functions.  相似文献   

17.
Cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) are produced by leukocytes and play a role in immune responses. They also function in normal brain physiology as well as in pathological conditions within the central nervous system, where they are produced by brain macrophages (microglia) and brain astrocytes. In this study, we document the ability of human immunodeficiency virus type 1 (HIV-1) to induce TNF alpha and IL-1 in primary rat brain cultures. While productive infection did not occur in these cells, it was not required for cytokine induction. Using monocyte/macrophage-tropic (JRFL) and T-cell-tropic (IIIB) strains of HIV-1, we were able to induce cytokines in both microglia and astrocytes. In addition to whole virus, recombinant envelope proteins also induced these cytokines. The induction of IL-1 and TNF alpha could be blocked by a panel of antibodies recognizing epitopes in the gp120 and gp41 areas of the envelope. Soluble recombinant CD4 did not block TNF alpha and IL-1 production. If TNF alpha and IL-1 can be induced in brain tissue by HIV-1, they may contribute to some of the neurologic disorders associated with AIDS.  相似文献   

18.
19.
India is experiencing a rapid spread of human immunodeficiency virus type 1 (HIV-1), primarily through heterosexual transmission of subtype C viruses. To delineate the molecular features of HIV-1 circulating in India, we sequenced the V3-V4 region of viral env from 21 individuals attending an HIV clinic in Calcutta, the most populous city in the eastern part of the country, and analyzed these and the other Indian sequences in the HIV database. Twenty individuals were infected with viruses having a subtype C env, and one had viruses with a subtype A env. Analyses of 192 subtype C sequences that included one sequence for each subject from this study and from the HIV database revealed that almost all sequences from India, along with a small number from other countries, form a phylogenetically distinct lineage within subtype C, which we designate C(IN). Overall, C(IN) lineage sequences were more closely related to each other (level of diversity, 10.2%) than to subtype C sequences from Botswana, Burundi, South Africa, Tanzania, and Zimbabwe (range, 15.3 to 20.7%). Of the three positions identified as signature amino acid substitution sites for C(IN) sequences (K340E, K350A, and G429E), 56% of the C(IN) sequences contained all three amino acids while 87% of the sequences contained at least two of these substitutions. Among the non-C(IN) sequences, all three amino acids were present in 2%, while 22% contained two or more of these amino acids. These results suggest that much of the current Indian epidemic is descended from a single introduction into the country. Identification of conserved signature amino acid positions could assist epidemiologic tracking and has implications for the development of a vaccine against subtype C HIV-1 in India.  相似文献   

20.
The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号