首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
本研究检测了绝经后骨质疏松症妇女的肿瘤坏死因子-α(TNF-α)和雌激素水平,并探讨了TNF-α对破骨前体细胞RAW264.7中破骨细胞标志物核因子κB受体激活因子(nuclear factor kappa-B, RANK)、组织蛋白酶K (Cathepsin K, CTSK)和凝血酶受体激活肽(thrombin receptor activating peptide, TRAP)以及核因子-κB (NF-κB)亚基(p65)和NF-κB抑制蛋白(IκBα)的影响。研究结果表明,绝经后骨质疏松症患者的TNF-α水平显著升高,而雌二醇水平显著降低。核因子κB受体激活因子配体(receptor activator for NF-κBligand, RANKL)处理1周后,破骨前体细胞RAW264.7中破骨细胞标志物RANK、CTSK和TRAP的mRNA和蛋白高度表达。与RANKL对照组相比,TNF-α处理可上调RANK、CTSK和TRAP m RNA的表达。但是,仅TNF-α不能诱导培养的RAW264.7细胞分化为破骨细胞成。TNF-α以剂量依赖性方式诱导NF-κB亚基p65和IκBα磷酸化,而NF-κB抑制剂处理则有效降低了RANK和TRAP的表达。本研究结论表明,绝经后骨质疏松症中TNF-α通过激活NF-κB来促进RANKL诱导的破骨细胞形成。  相似文献   

5.
6.
Tetracycline antibiotics, including doxycycli\e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.  相似文献   

7.
8.
It has been reported that Cordyceps sinensis, a traditional Chinese medicine, has various pharmacological effects. The aim of this study was to clarify the effect of water extract of Cordyceps sinensis (WECS) on osteoclast differentiation in vitro. In mouse bone marrow cells and monocyte/macrophage cell line RAW264.7, WECS dose-dependently inhibited the receptor activator of nuclear factor kappa B (NF-kappaB) ligand (RANKL)-induced osteoclast differentiation by tartrate-resistant acid phosphatase (TRAP) staining. In fact, cytotoxic effect was not observed in the RAW264.7 cells treated with WECS. Moreover, the mRNA expression of osteoclast related genes (calcitonin receptor, cathepsin K, matrix metalloprotease 9 and nuclear factor of activated T cells c1) was also inhibited by WECS. Investigation of inhibitory mechanism by using electrophoretic mobility shift assay (EMSA) and Western blot analysis revealed that WECS inhibited the activation of NF-kappaB through the prevention of IkappaBalpha phosphorylation. In conclusion, the present results demonstrate for the first time that WECS is a potent inhibitor of the RANKL-induced osteoclast differentiation through a mechanism involving the NF-kappaB pathway.  相似文献   

9.
Phenolic compounds including tannins and flavonoids have been implicated in suppression of osteoclast differentiation/function and prevention of bone diseases. However, the effects of hydrolysable tannins on bone metabolism remain to be elucidated. In this study, we found that furosin, a hydrolysable tannin, markedly decreased the differentiation of both murine bone marrow mononuclear cells and Raw264.7 cells into osteoclasts, as revealed by the reduced number of tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells and decreased TRAP activity. Furosin appears to target at the early stage of osteoclastic differentiation while having no cytotoxic effect on osteoclast precursors. Analysis of the inhibitory mechanisms of furosin revealed that it inhibited the receptor activator of nuclear factor-kappaB ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK)/activating protein-1 (AP-1). Furthermore, furosin reduced resorption pit formation in osteoclasts, which was accompanied by disruption of the actin rings. Taken together, these results demonstrate that naturally occurring furosin has an inhibitory activity on both osteoclast differentiation and function through mechanisms involving inhibition of the RANKL-induced p38MAPK and JNK/AP-1 activation as well as actin ring formation.  相似文献   

10.
11.
During osteoporosis, fat mass and obesity-associated protein (FTO) promotes the shift of bone marrow mesenchymal stem cells to adipocytes and represses osteoblast activity. However, the role and mechanisms of FTO on osteoclast formation and bone resorption remain unknown. In this study, we investigated the effect of FTO on RAW264.7 cells and bone marrow monocytes (BMMs)-derived osteoclasts in vitro and observed the influence of FTO on ovariectomized (OVX) mice model to mimic postmenopausal osteoporosis in vivo. Results found that FTO was up-regulated in BMMs from OVX mice. Double immunofluorescence assay showed co-localization of FTO with tartrate-resistant acid phosphatase (TRAP) in femurs of OVX mice. FTO overexpression enhanced TRAP-positive osteoclasts and F-actin ring formation in RAW264.7 cells upon RANKL stimulation. The expression of osteoclast differentiation-related genes, including nuclear factor of activated T cells c1 (NFATc1) and c-FOS, was upregulated in BMMs and RAW264.7 cells after FTO overexpression. FTO overexpression induced the phosphorylation and nuclear translocation of factor-kappa B (NF-κB) p65 in BMMs and RAW264.7 cells exposed to RANKL. ChIP and dual-luciferase assays revealed that FTO overexpression contributed to RANKL-induced binding of NF-κB to NFATc1 promoter. Rescue experiments suggested that FTO overexpression-mediated osteoclast differentiation was suppressed after intervention with a NF-κB inhibitor pyrrolidine dithiocarbamate. Further in vivo evidence revealed that FTO knockdown increased bone trabecula and bone mineral density, inhibited bone resorption and osteoclastogenesis in osteoporotic mice. Collectively, our research demonstrates that downregulated FTO inhibits bone resorption and osteoclastogenesis through NF-κB inactivation, which provides a novel reference for osteoporosis treatment.  相似文献   

12.
13.
14.
Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-alpha antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). TNF-alpha might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-kappaB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.  相似文献   

15.
Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.  相似文献   

16.
The bone protective effects of resveratrol have been demonstrated in several osteoporosis models while the underlying mechanism is largely unclear. In the present study, we evaluated the effects of resveratrol on differentiation and apoptosis of murine osteoclast progenitor RAW 264.7 cells. We found that resveratrol at non-toxic concentrations dose-dependently inhibited RANKL-induced osteoclast differentiation and induced apoptosis. Resveratrol has been shown to be an activator of Sirt1, a NAD+ dependent protein deacetylase, and has been demonstrated to mimic estrogen. However, we found that although Sirt1 protein was abundantly expressed in RAW264.7 cells, the specific Sirt1 inhibitor EX-527 could not attenuate the inhibition of osteoclastogenesis mediated by resveratrol. Also, the effects of resveratrol could not be attenuated by ICI-182780, a high affinity estrogen receptor antagonist. The central role of reactive oxygen species (ROS) in RANKL-induced osteoclast differentiation has recently been clarified. We found that resveratrol suppressed RANKL-induced ROS generation in a concentration dependent manner. We postulate that the direct inhibitory effects of resveratrol on osteoclastogenesis are mediated via inhibition of ROS generation.  相似文献   

17.
TGF-beta increases bone resorption in vivo and greatly increases osteoclast formation stimulated by receptor activator of NF-kappaB ligand (RANKL) in vitro. TGF-beta does not independently affect the differentiation state of RAW264.7 preosteoclasts, but increases cell attachment to vitronectin. This effect is mediated by increased expression of alphaV integrin subunit mRNA and protein. Concomitant with induction of osteoclast differentiation, RANKL causes relocation of alphaV to focal sites in the cell. This effect is potentiated by TGF-beta. Integrin blockade disrupts both attachment to vitronectin and RANKL-induced osteoclast formation, but culture on vitronectin has little effect. Ectopic expression of alphaV stimulates multinucleation of RAW264.7 cells and increases the number of osteoclasts formed in the presence of RANKL. These data suggest that TGF-beta potentiates RANKL-induced osteoclast formation, in part by increased expression of the alphaV integrin subunit, which may contribute to cell fusion.  相似文献   

18.
Eph受体是酪氨酸蛋白激酶受体家族中最大的亚家族,ephrin(Eph受体相互作用蛋白)是其配体,它们是膜结合蛋白,相互依赖进行信号转导.内居蛋白(syntenin)与Pick1属于PDZ结构域(PSD-95/Dlg-/Zo-1 domain)蛋白,报道称能与ephrinB配体结合,但是否受Eph受体调控尚未见报道.以RAW264.7细胞株为研究对象,通过蛋白质印迹及/或免疫荧光分析显示RAW264.7细胞经RANKL诱导的破骨细胞表达ephrinB2、内居蛋白(syntenin)和Pick1三个蛋白质.将提前成簇的可溶性EphB4蛋白加入培养液,与ephrinB2配体结合,用来研究EphB4/ephrinB2逆向信号对syntenin和Pick1表达水平变化的影响.免疫印迹及Real-time RT-PCR分析结果显示,在EphB4-Fc实验组中Pick1的蛋白质及mRNA水平都有明显增加,然而在EphB4-Fc实验组与Fc对照组别间syntenin的蛋白质及mRNA水平未见明显变化.免疫共沉淀结果显示,syntenin和Pick1不能与ephrinB2共沉淀.以上结果初步探索了体外破骨细胞分化过程中,EphB4/ephrinB2逆向信号对PDZ结构域蛋白(ephrinB2配体潜在的下游信号分子)表达变化的调控.  相似文献   

19.
Osteoclasts play a seminal role in many skeletal diseases and therefore are candidates for cell-based gene delivery systems to treat disorders of bone. As an initial step toward developing osteoclast-mediated gene delivery systems, we have made and analyzed a customized Molony-Murine leukemia virus (MMLV)-based retroviral vector containing elements of the osteoclast-specific tartrate-resistant acid phosphatase (TRAP) gene. RAW 264.7 cells were transduced with the customized vector (E3) and differentiated along macrophage or osteoclast lineages. E3 contained a truncated form of the human nerve growth factor receptor (NGFR) as a reporter gene. NGFR expression increased with RANK-ligand (RANK-L) treatment but not with macrophage (gamma-IFN/LPS treatment) differentiation. Enhanced NGFR expression peaked 48 h after RANK-L treatment. Electrophoretic mobility shift assays (EMSA) analysis of the TRAP gene regulatory elements in E3 identified a single 27 bp DNA probe, which specifically bound protein from RANK-L-treated cells. DNA sequence revealed AP-1 binding sites, and analysis with mutant probes implied that the sites were functional. EMSA supershift analysis identified Fos protein interacting with the 27 bp probe. In summary, insertion of sequence -962 to -868 from the TRAP gene into the U3 region of the MMLV LTR confers RANK-L induced retroviral gene expression via Fos family protein interaction at AP-1 sites.  相似文献   

20.
Hyaluronic acid (HA) is a component of the extracellular matrix that has been shown to play an important role in bone formation, resorption, and mineralization both in vivo and in vitro. We examined the effects of HA at several molecular weights on osteoclast formation and function induced by RANKL (receptor activator of NF-kappa B ligand) in a mouse monocyte cell line (RAW 264.7). HA at M(r) < 8,000 (low molecular weight HA (LMW-HA)) enhanced tartrate-resistant acid phosphatase-positive multinucleated cell formation and tartrate-resistant acid phosphatase activity induced by RANKL in a dose-dependent manner, whereas HA at M(r) > 900,000 (high molecular weight HA (HMW-HA)) showed no effect on osteoclast differentiation. LMW-HA enhanced pit formation induced by RAW 264.7 cells, whereas HMW-HA did not, and LMW-HA stimulated the expression of RANK (receptor activator of NF-kappa B) protein in RAW 264.7 cells. In addition, we found that LMW-HA enhanced the levels of c-Src protein and phosphorylation of ERKs and p38 MAPK in RAW 264.7 cells stimulated with RANKL, whereas the p38 MAPK inhibitor SB203580 inhibited RANKL-induced osteoclast differentiation. This enhancement of c-Src and RANK proteins induced by LMW-HA was inhibited by CD44 function-blocking monoclonal antibody. These results indicate that LMW-HA plays an important role in osteoclast differentiation and function through the interaction of RANKL and RANK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号