首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
3种水稻土中7株固氮蓝细菌的分离与特征   总被引:1,自引:0,他引:1  
【背景】蓝细菌是水生和陆地生态系统中生物固氮的主要贡献者。【目的】增加对稻田土壤固氮蓝细菌的了解,获得用于进一步研究的可培养固氮蓝细菌菌株。【方法】选择3种具有不同固氮能力的水稻土,采用BG11-N培养基分离培养固氮蓝细菌菌株,对新分离菌株进行形态特征观察,通过基因组DNA的nifH基因扩增明确其固氮潜力,进一步采用乙炔还原法和~(15)N_2示踪法定量测定其固氮能力,通过基因组DNA的16SrRNA基因序列比对进行鉴定。【结果】在光照培养条件下,采用BG11-N培养基共分离纯化得到自养菌株7株,细胞呈圆形或椭圆形、单列、无分枝、丝状和念珠状,在固体培养基上形成团垫状菌落。新分离菌株在BG11-N培养基中生长状况良好,以基因组DNA为模板可扩增出nifH基因,乙炔还原法和~(15)N_2示踪法测定结果显示具有较高固氮能力,同时具有铁载体生成能力。结合16S rRNA基因序列比对和形态特征,7株菌被初步鉴定隶属于念珠藻科(Nostocaceae)。【结论】从水稻土中分离到在稻田生物固氮中发挥重要作用的蓝细菌(念珠藻科)菌株,可培养固氮蓝细菌菌株固氮能力较高,兼具铁载体生成能力,可作为进一步深入研究的微生物资源,具有潜在的研究应用价值。  相似文献   

2.
通过气溶胶发生系统模拟PM2.5颗粒的发生,运用15N示踪技术研究了欧美杨107(Populus euramericana Neva.)对PM2.5中水溶性无机成分NH+4和NO-3的吸收与分配规律。结果表明,欧美杨能够有效吸收PM2.5中的NH+4和NO-3。轻度和重度污染下,欧美杨叶片对NH+4和NO-3的吸收速率均于处理后第1天达到峰值,之后,轻度污染下对NH+4和NO-3的吸收速率迅速降低以后趋于稳定,而重度污染下对NH+4和NO-3的吸收速率缓慢下降至趋于稳定。轻度污染下的欧美杨叶片的15N含量在处理后第1天达到峰值,15N(NH+4)的含量为0.11 mg/g,干重,15N(NO-3)的为0.14 mg/g,干重,之后15N含量迅速下降至趋于稳定。重度污染下的叶片15N含量在处理第1天迅速增长,之后缓慢增长至处理后第7天达到最高值,15N(NH+4)的含量为0.11 mg/g,干重,15N(NO-3)的为0.13 mg/g,干重。处理7 d后,欧美杨不同组织器官吸收或通过再分配获取的15N含量存在差异。轻度污染下,细根对NH+4和NO-3的吸收量最高,树皮、叶柄、叶片次之,髓最低。而重度污染下,叶片对NH+4和NO-3的吸收量最高,细根、叶柄、树皮次之,髓最低。欧美杨各组织器官中NH+4和NO-3的含量均表现为重度污染大于轻度污染,且两种污染程度下的欧美杨各组织器官对NO-3的吸收均大于对NH+4的吸收。重度污染下,欧美杨茎木质部对15N(NH+4和NO-3)的吸收征调能力(Ndff,Nitrogen derived from fertilizer)最大,其次为髓,叶片最小;欧美杨各组织器官中的15N分配率表现为叶片细根叶柄树皮粗根茎木质部髓。研究结果对进一步揭示植物吸收PM2.5的机制及有效利用植物降低颗粒物污染、净化环境提供了重要的科学理论依据。  相似文献   

3.
在无有机碳源和缺氧条件下,应用15N示踪考察4株具有氨氧化作用的菌株在膜反应器中的氨氧化产气情况。当溶氧浓度(DO)<0.5mg/L的缺氧条件下,自养菌Nitro-som onas sp.单株培养,能将6.3%的氨氮转化为氮气,15N2产生量占氨氮消耗量的21.86%。自养菌株与异养菌株混合培养,可将30.86%的氨氮转化为氮气,15N2产生量占氨氮消耗量的80.38%。在无有机碳的条件下,自养菌和异养菌  相似文献   

4.
流溪河水库颗粒有机物及浮游动物碳、氮稳定同位素特征   总被引:2,自引:0,他引:2  
宁加佳  刘辉  古滨河  刘正文 《生态学报》2012,32(5):1502-1509
为了解影响流溪河水库颗粒有机物(POM)碳和氮稳定同位素(δ13C和δ15N)变化的主要因素,及其与浮游动物δ13C和δ15N之间的关系,于2008年5月至12月份对POM及浮游动物的δ13C和δ15N进行了研究。颗粒有机物碳稳定同位素(δ13CPOM)和氮稳定同位素(δ15NPOM)的季节性变化幅度分别为5.1‰和2.2‰,5月和7月份δ13CPOM较高,而在10月和12月份降低,这主要与降雨将大量外源有机物带入水库而引起的外源及内源有机物在POM组成上发生变化有关。δ15NPOM总体呈上升趋势,可能是由降雨引起的外源负荷、初级生产力、生物固氮等因素共同作用的结果。浮游动物的δ13C及δ15N总的变化趋势与POM的相似,也具有明显的季节性变化,食物来源的季节变化可能是造成其变化的主要原因。在5月份,浮游动物的食物来源为POM中δ13C较高的部分,也就是外源有机物,而在10月及12月份,其食物则可能主要为浮游植物。  相似文献   

5.
汪庆兵  张建锋  陈光才  孙慧  吴灏  张颖  杨泉泉  王丽 《生态学报》2015,35(16):5364-5373
采用水培法,研究了旱柳苗在外源添加不同氮水平(贫氮、中氮、富氮、过氮)的铵态氮(NH+4-N)和硝态氮(NO-3-N)的生长、氮吸收、分配和生理响应。结果表明:一定范围氮浓度的增加能够促进旱柳苗的生长,但过量氮会抑制其生长,且NH+4-N的抑制作用大于NO-3-N;两种氮处理下,旱柳表现出对NH+4-N的吸收偏好,在同一氮水平时,旱柳各部位氮原子百分含量Atom%15N(AT%)、15N吸收量和来自氮源的N%(Ndff%)均为NH+4-N处理大于NO-3-N处理,且随着氮浓度的增加,差异增大,且在旱柳各部位的分布为根﹥茎﹥叶;2种氮素过量和不足均会对旱柳根和叶生理指标产生不同的影响,其中在过氮水平时,NH+4-N和NO-3-N处理下根系活力比对照减少了50.61%和增加了19.53%;在过氮水平时,NH+4-N处理柳树苗根总长、根表面积、根平均直径、根体积和侧根数分别对照下降了30.92%、29.48%、19.44%、27.01%和36.41%,NO-3-N处理柳树苗相应的根系形态指标分别对对照下降了1.66%、5.65%、1.49%、5.06%和25.72%。可见,高浓度NH+4-N对旱柳苗的胁迫影响大于NO-3-N,在应用于水体氮污染修复时可通过改变水体无机氮的比例,削弱其对旱柳的影响,从而提高旱柳对水体氮污染的修复效果。  相似文献   

6.
赵兴云  李宝惠  王建  商志远  钱君龙 《生态学报》2012,32(21):6647-6660
对浙江天目山2株柳杉(Cryptomeria fortunei Hooibrenk ex Otto et Dietr,分别简称为CF-1,CF-3)及南京紫金山8株马尾松(Pinus massoniana Lamb.,分别简称为PM-1-PM-4,PM-7-PM-10)树轮δ13C平均值方位序列及2株柳杉树轮δ13C方位平均值年序列进行了谐波分析。分析结果及相关性检验表明,树轮δ13C值的方位变化有很强的谐波特征。第1次谐波与第2次谐波分量的方差贡献率占原序列总方差的百分比,除PM-8与PM-10低于70%外,其余均在70%以上,其中,CF-1与PM-9分别达到了93%和96.5%。第1次与第2次(或第3次)谐波的拟合序列与原序列的相关性极高,相关系数均在0.8以上,都通过了0.05的显著性检验,而且,两次谐波的拟合度均比较高,均在75%以上,拟合效果较好。分析结果表明,用2π与π(PM-1与PM-7为2π/3)两个主要谐波周期就可以较好地拟合各树轮δ13C序列的方位变化。初相位值的计算结果显示,第1、2次谐波的初相位值存在明显差异,这表明:不同树体2次谐波振幅的峰值出现的方位区域不同,即以2π及以π(PM-1与PM-7为2π/3)为周期的树轮δ13C方位变化的极大值并不出现在固定方位区。所以,两次谐波叠加的结果使树轮δ13C极值出现的方位区域更复杂。对天目山2株柳杉树轮δ13C各方位均值年序列的分析结果表明,2树轮δ13C极值均存在明显的年际漂移,其极大值出现频率较高的方位随树木生长坡向而发生转移。两树轮相比,多数年份其δ13C的主极大值出现的方位区基本发生45°的方位转移。而主、次极大值叠加的结果却使δ13C极值出现的方位基本发生90°的转移,这种极值转移的方向及转移度数与2株树所在坡向的变化和坡向变化度数正好相一致。  相似文献   

7.
采用大田试验,直接撕表皮或对叶片进行固定处理,结合单染、复染、荧光染色等多种细胞学显色方法,利用光学显微镜、荧光显微镜和扫描电子显微镜系统观察玉米叶表皮短细胞的发生时期、发育过程、分布规律以及形态结构特征,研究K+和H2O2在栓质细胞中的分布变化与表皮其它细胞中K+和H2O2的分布及气孔器开关的关系,为进一步挖掘短细胞的新功能提供细胞学依据。结果表明:(1)短细胞是同步发生在玉米多叶位新表皮组织形成过程中,所有植株从第7新生叶,大部分第6叶,极少数第5叶的基部同时开始发生短细胞,之后新生的高位叶也均发生短细胞,并随着叶位的升高叶片各部位短细胞密度均增大,所有植株的1~4叶(因不再生长)均无短细胞出现。(2)初期发育的叶表皮细胞进行不对称分裂,生成相互交替的长、短细胞,有的短表皮细胞横(垂直叶脉)分裂,形成栓质细胞和硅质细胞对;栓质细胞基部与叶肉细胞相邻,硅质细胞嵌在栓质细胞和表皮细胞间偏上。(3)有短细胞发生的叶片,宏观背面发亮且覆有蜡质层,微观表皮细胞的着色特性发生了变化;栓质细胞为面包形柱状细胞,硅质细胞为哑铃形扁细胞。(4)气孔器张开时,栓质细胞中没有K+和H2O2的积累;气孔器关闭时,栓质细胞中积累了大量的K+和H2O2,且栓质细胞中K+和H2O2的积累始终与副卫细胞中K+和H2O2的积累变化一致,而硅质细胞和长细胞没有K+和H2O2的积累。该研究确定了玉米叶表皮短细胞发生的时期;展示了其发育过程的形态学变化特征;发现栓质细胞中K+和H2O2的积累随气孔器开关呈周期性变化,且与副卫细胞中K+和H2O2的积累变化保持一致。  相似文献   

8.
9.
山东潍坊地下水硝酸盐污染现状及δ15N溯源   总被引:2,自引:0,他引:2  
采用均匀布点选取了山东潍坊居民区、粮田和蔬菜种植区等区域地下水为研究对象,分析了地下水硝态氮含量及污染来源,结果表明:潍坊地区地下水硝态氮平均含量为28.1 mg/L ,按照国家地下水质量标准(GB/T 14848-93)属于Ⅲ类水;饮用水井硝态氮平均含量为23.3 mg/L, 最高值达到了150 mg/L,对国家饮用水标准(10 mg/L)超标率高达73.5%,严重超标率达50%;不同土地利用方式下地下水硝态氮含量不同,设施蔬菜种植区最高,其次是露地蔬菜种植区, 小麦-玉米种植区地下水硝态氮含量较低,但都超过了WHO饮用水中硝酸盐的最大允许含量50 mg/L的规定(折合为硝态氮11.3 mg/L);硝酸盐与水质离子之间的相关性以及水质分析相关的派珀图分析显示地下水硝酸盐污染与氮肥施用有关;根据硝酸盐δ15N的稳定同位素溯源分析,潍坊地区地下水硝酸盐41.5%来自于化肥,14.6%来自于生活污水,其他是来自化肥、生活污水和家畜粪尿的混合污染。综上,潍坊市地下水硝酸盐污染非常严重,已经对当地居民的身体健康造成了潜在的威胁;因此,亟需从源头控制做起,减少肥料的过量投入和生活污水的随意排放,以控制硝酸盐的继续污染及改善当地水环境。  相似文献   

10.
海藻多糖抑制白细胞呼吸爆发作用研究   总被引:15,自引:0,他引:15  
采用ESR、自旋捕集及自旋氧探针技术,研究了海藻硫酸多糖(SPS)对豆蔻酰佛波醇乙酯(PMA)刺激的多形核白细胞(PMN)呼吸爆发的影响.结果表明,SPS能显著抑制PMN呼吸爆发,10 g/L和5 g/L SPS几乎完全清除PMN呼吸爆发产生的自由基,1 g/L SPS可清除53.2%;10 g/L SPS对PMN的耗氧量也有较明显的抑制作用.  相似文献   

11.
We carried out a 24-h station experiment at Lake Biwa (Japan) to measure mixing events and concurrent biological signals using a free-fall microstructure profiler (TurboMAP-L), conventional hydrographic measurement device (F-probe), and the Tracker acoustic profiling system (TAPS). A clearly defined three-layer physical system was observed. Two layers were actively mixed: the surface-mixed layer and the subsurface-mixed layer. Both winds and night-time convection create the surface-mixed layer, and vertical shear due to a counterclockwise gyre maintains turbulence in the subsurface mixing layer. A strongly stratified layer between these two mixing layers is almost turbulence free, so no material flux is expected. A local oxygen maximum layer, a local oxygen minimum layer, and layers of increased chlorophyll and zooplankton abundance are all located in this strongly stratified layer. The data show the intricate influence of physical processes on the structure of biological systems and their combined influence on biogeochemical and trophic transfers in aquatic systems.  相似文献   

12.
Biological nitrogen fixation in trees in agro-ecosystems   总被引:1,自引:0,他引:1  
The integration of trees, especially nitrogen fixing trees (NFTs), into agroforestry and silvo-pastoral systems can make a major contribution to sustainable agriculture by restoring and maintaining soil fertility, and in combating erosion and desertification as well as providing fuelwood. The particular advantage of NFTs is their biological nitrogen fixation (BNF), their ability to establish in nitrogen-deficient soils and the benefits of the nitrogen fixed (and extra organic matter) to succeeding or associated crops.The importance of NFTs leads to the question of how we can maximise or optimize their effects and how we can manage BNF and the transfer of nitrogen to associated or succeeding plantings. To be able to achieve these goals, suitable methods of measuring BNF in trees are necessary. The total nitrogen difference (TND) method is simple, but is better suited for low than high soil N conditions. The acetylene reduction assay (ARA), although sensitive and simple, has many technical limitations especially for NFTs, and the estimates of BNF have generally been very low, compared to other methods. For NFTs, the 15N techniques are still under development, but have already given some promising results (e.g., has been used to measure large genetic variability in BNF within different NFTs).Various factors affect BNF in trees. They include the age of trees, the microbial component, soil moisture, temperature, salinity, pH, soil N level and plant nutrient deficiencies. Some of the factors, e.g. temperature, affect the symbiosis more than plant growth, and differences in the effects of these factors on BNF in different NFT genotypes have been reported. These factors and research needs for improving BNF in trees are discussed.  相似文献   

13.
A field experiment was conducted at the Coconut Research Institute in Sri Lanka to examine the biological nitrogen fixation potential of three Gliricidia sepium provenances (OFI 14/84, 17/84, 12/86) and a local landrace (designated LL), using the 15N isotope dilution method. There was marked variation in dry matter, total N, nodulation and 15N enrichment among the Gliricidia genotypes (=0.001), and the dry matter yield of Cassia siamea (syn. Senna siamea), the non-N2 fixing reference plant was higher than for G. sepium. In all cases, highest biomass and total N were aboveground, with roots on average accounting for < 20 % of total dry matter or the total N in plants. Atom % 15N excess was highest in C. siamea, and lowest in OFI 14/84. Although atom % 15N excess was lower in Gliricidia leaves than in the other organs (all of which had similar 15N enrichments), values of % N derived from atmospheric N2 fixation (% Ndfa) calculated for any individual organ or for the whole plant were similar. This was because the relative distribution of 15N in the different parts of the fixing plant followed the same trend as in the reference plant. There were significant differences (p=0.01) in N2 fixation between the Gliricidia genotypes. The values ranged from 17.8 g N tree-1 (equivalent to 86 kg N ha-1 at 5000 trees ha-1) in OFI 12/86 to 61.7g N tree-1 (equivalent to 309 kg N ha-1) in OFI 14/84. Although most of this variability was due to differences in both % Ndfa and total N in plant, amount of N fixed was more correlated with total N in plant (r=0.935) than with % Ndfa (r=0.707). On average, % Ndfa in all three G. sepium provenances and LL was about 55 % or 34.6 g N tree-1 (equivalent to some 166 kg N ha-1) in the 9 months within which N2 fixation was measured. This represents a substantial contribution of N into the soil-plant system.  相似文献   

14.
Biological nitrogen fixation in mixed legume-cereal cropping systems   总被引:5,自引:1,他引:5  
Cereal/legume intercropping increases dry matter production and grain yield more than their monocultures. When fertilizer N is limited, biological nitrogen fixation (BNF) is the major source of N in legume-cereal mixed cropping systems. The soil N use patterns of component crops depend on the N source and legume species. Nitrogen transfer from legume to cereal increases the cropping system's yield and efficiency of N use. The use of nitrate-tolerant legumes, whose BNF is thought to be little affected by application of combined N, may increase the quantity of N available for the cereal component. The distance between the cereal and legume root systems is important because N is transferred through the intermingling of root systems. Consequently, the most effective planting distance varies with type of legume and cereal. Mutual shading by component crops, especially the taller cereals, reduces BNF and yield of the associated legume. Light interception by the legume can be improved by selecting a suitable plant type and architecture. Planting pattern and population at which maximum yield is achieved also vary among component species and environments. Crops can be mixed in different proportions from additive to replacement or substitution mixtures. At an ideal population ratio a semi-additive mixture may produce higher gross returns.  相似文献   

15.
Farm lands of resource-poor communities in South Africa are depleted of nutrients due to continuous mono-cropping, limited use of fertilisers, and sometimes leaching caused by high rainfall. Despite the well-known advantages of biological nitrogen fixation (BNF) in cropping systems, less than 10% of the grain crops planted annually in these areas are legumes. Using a participatory research and development approach, resource-poor farmers were introduced to conservation agriculture (CA) practices, including BNF, that promoted zero (or reduced) tillage, increased retention of soil cover, as well as crop diversification. Because crop rotation and intercropping of legumes with cereals are known to contribute to soil fertility while enhancing food security, resource-poor farmers from various Provinces in South Africa were trained on the benefits of legume culture for eight years. As a result, these resource-poor farmers did not only get training in inoculation techniques, but were also supplied with inoculants for use on their farms. Data collected from Farmers Demonstration Trials at Belvedere, Dumbarton and Lusikisiki, showed that the grain and fodder yield of maize planted after legumes, and maize intercropped with legumes, were comparable to those of maize receiving high N fertilizer dose (i.e. 54 kg N at planting and 54 kg N as top-dressing). The same data further showed thatRhizobium inoculation, when combined with application of low levels of P and K, significantly increased crop yields within farmers’ trial plots. BNF therefore offers a great opportunity for resource-poor farmers in South Africa to increase their crop yields and thus improve the quality of their livelihoods through the adoption of affordable and sustainable biological technologies that enhance soil fertility.  相似文献   

16.
Biological nitrogen fixation in mixed legume/grass pastures   总被引:18,自引:2,他引:16  
Biological nitrogen fixation (BNF) in mixed legume/grass pastures is reviewed along with the importance of transfer of fixed nitrogen (N) to associated grasses. Estimates of BNF depend on the method of measurement and some of the advantages and limitations of the main methods are outlined. The amounts of N fixed from atmospheric N2 in legume/grass pastures throughout the world is summarised and range from 13 to 682 kg N ha-1 yr-1. the corresponding range for grazed pastures, which have been assessed for white clover pastures only, is 55 to 296 kg N ha-1 yr-1.Biological nitrogen fixation by legumes in mixed pastures is influenced by three primary factors; legume persistence and production, soil N status, and competition with the associated grass(es). These factors and the interactions between them are discussed. Legume persistence, production and BNF is also influenced by many factors and this review centres on the important effects of soil moisture status, soil acidity, nutrition, and pests and disease.Soil N status interacts directly with BNF in the short and long term. In the short-term, increases in soil inorganic N occurs during dry conditions and where N fertiliser is used, and these will reduce BNF. In the long-term, BNF leads to accumulation of soil N, grass dominance, and reduced BNF. However, cyclical patterns of legume and grass dominance can occur due, at least in part, to temporal changes in plant-available N levels in soil. Thus, there is a dynamic relationship between legumes and grasses whereby uptake of soil N by grass reduces the inhibitory effect of soil N on BNF and competition by grasses reduces legume production and BNF. Factors affecting the competition between legumes and grasses are considered including grass species, grazing animals, and grazing or cutting management.Some fixed N is transferred from legumes to associated grasses. The amount of N transferred below-ground, predominantly through decomposition of legume roots and nodules, has been estimated at 3 to 102 kg N ha-1 yr-1 or 2 to 26% of BNF. In grazed pasture, N is also transferred above-ground via return in animal excreta and this can be of a similar magnitude to below-ground transfer.Increased BNF in mixed legume/grass pastures is being obtained through selection or breeding of legumes for increased productivity and/or to minimise effects of nutrient limitations, low soil moisture, soil acidity, and pests and disease. Ultimately, this will reduce the need to modify the pasture environment and increase the role of legumes in low-input, sustainable agriculture.  相似文献   

17.
Summary Mediterranean sclerophyll shrubs respond to seasonal drought by adjusting the amount of leaf area exposed and by reducing gas exchange via stomatal closure mechanisms. The degree to which each of these modifications can influence plant carbon and water balances under typical mediterranean-type climate conditions is examined. Leaf area changes are assessed in the context of a canopy structure and light microclimate model. Shifts in physiological response are examined with a mechanistically-based model of C3 leaf gas exchange that simulates progressive reduction of maximum photosynthesis and transpiration rates and increasingly strong midday stomatal closure over the course of drought. The results demonstrate that midday stomatal closure may effectively contribute to drought avoidance, increase water use efficiency, and strongly alter physiological efficiency in the conversion of intercepted light energy to photoproducts. Physiological adjustments lead to larger reductions in water use than occur when comparing leaf area index 3.5 to 1.5, extremes found for natural stands of sclerophyll shrubs in the California chaparral. Reductions in leaf area have the strongest effect on resource capture and use during non-water-stressed periods and the least effect under extreme drought conditions, while shifts in physiological response lead to large savings of water and efficient water use under extreme stress. An important model parameter termed GFAC (proportionality factor expressing the relation of conductance [g] to net photosynthesis rate) is utilized, which changes in response to the integrated water stress experimence of shrubs and alters the degree to which stomata may open for a given rate of carbon fixation. We attempt to interpret this parameter in terms of physiological mechanisms known to modify control of leaf gas exchange during drought. The analysis helps visualize means by which canopy gas exchange behavior may be coupled to physiological changes occurring in the root environment during soil drying.  相似文献   

18.
Biological nitrogen fixation in non-leguminous field crops: Recent advances   总被引:5,自引:0,他引:5  
There is strong evidence that non-leguminous field crops sometimes benefit from associations with diazotrophs. Significantly, the potential benefit from N2 fixation is usually gained from spontaneous associations that can rarely be managed as part of agricultural practice. Particularly for dryland systems, these associations appear to be very unreliable as a means of raising the nitrogen status of plants. However, recent technical advances involving the induction of nodular structures on the roots of cereal crops, such as wheat and rice, offer the prospect that dependable symbioses with free-living diazotrophs, such as the azospirilla, or with rhizobia may eventually be achieved.  相似文献   

19.
Biological nitrogen fixation is a key ecosystem function incorporating new nitrogen (N) during primary successions. Increasing evidence from tropical and northern temperate forests shows that phosphorus (P) and molybdenum (Mo) either alone or in combination limit the activity of free-living diazotrophs. In this study, we evaluated the effects of Mo, P, and carbon (C) addition, either singly or in combination, and moisture, on diazotrophic activity in a post-volcanic forest chronosequence in south-fentral Chile. Diazotrophic activity, both free-living (associated with fine litter) and symbiotic (associated with the moss Racomitrium lanuginosum and the cyanolichens Pseudocyphellaria berberina and P. coriifolia), was evaluated by incubation of samples and subsequent acetylene reduction assays conducted in the field and laboratory, in winter, spring and autumn of two consecutive years. Results showed that diazotrophic activity varied with the season of the year (lowest during the drier spring season), successional stage (highest in the maximal stage), and N-fixer community type (highest in symbiotic diazotrophs). In general, C+P+Mo limitation was documented for heterotrophic diazotrophs and P+Mo limitation for symbiotic diazotrophs. Limitation of diazotrophic activity was not associated with soil nutrient and C status in the chronosequence. Strong inhibition of diazotrophic activity by high N addition and by low moisture suggests that reductions in precipitation expected for south-central Chile under climate change, as well as increasing inputs of reactive N from atmospheric deposition due to increasing use of N fertilizers, may drastically alter the composition and functional role of cryptogamic assemblages in native forests.  相似文献   

20.
The vertical distributions of ethylene and methane in the upper water column of the subtropical Atlantic were measured along a transect from Madeira to the Caribbean and compared with temperature, salinity, oxygen, nutrients, chlorophyll-a, and dissolved organic carbon (DOC).Methane concentrations between 41.6 and 60.7 nL L-1 were found in the upper 20 m of the water column giving a calculated average flux of methane into the atmosphere of 0.82 g m-2 h-1. Methane profiles reveal several distinct maxima in the upper 500 m of the water column and short-time variations which are presumably partly related to the vertical migration of zooplankton.Ethylene concentrations in near surface waters varied in the range of 1.8 to 8.2 nL L-1. Calculated flux rates for ethylene into the atmosphere were in the range of 0.41 to 1.35 g m-2 h-1 with a mean of 0.83 g m-2 h-1. Maximum concentrations of up to 39.2 nL L-1 were detected directly below the pycnocline in the western Atlantic. The vertical distributions of ethylene generally showed one maximum at the pycnocline (about 100 m depth) where elevated concentrations of chlorophyll-a, dissolved oxygen, and nutrients were also found; no ethylene was detected below 270 m depth. This suggests that ethylene release is mainly related to one, probably phytoplankton associated, source, while for methane, enhanced net production occurs at various depth horizons. For surface waters, a simple correlation between ethylene and chlorophyll-a or DOC concentrations could not be observed. No considerable diurnal variation was observed for the distribution and concentration of ethylene in the upper water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号