首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypericum hookerianum is a lesser known ethnomedicinal plant having wound healing, antitumor and anti-HSV-1 properties. Isolated nodes of in vitro shoots sub-cultured in the dark for 4 weeks on half strength Murashige and Skoog medium solidified with Gelzan (1.5 g l?1), and supplemented with 2.325 μM kinetin produced 8.0 ± 0.40 etiolated shoots of 5.0 ± 0.62 cm length at 74 % efficiency versus 9.2 ± 0.6 healthy shoots of 4.4 ± 0.5 cm obtained from nodes in light at 96 % efficiency. Low concentrations of hypericin were found in wild plant [0.35 ± 0.09 mg g?1 dry weight (DW)] and control green shoot cultures (0.91 ± 0.03 mg g?1 DW). Etiolated shoots exposed to a 12 h photoperiod (50 μmol m?2 s?1) through 1–25 days turned red incrementally due to synthesis and accumulation of 0.1–3.83 mg g?1 DW hypericin in sub-epidermal cortical cells of the stem and varied shaped cells of the distorted mesophyll. Flavonoid and anthocyanin concentrations of the etiolated shoots subjected to the 12 h photoperiod were 3–5 fold higher than the control shoot cultures while total chlorophylls [1.97 ± 0.05 mg g?1 fresh weight (FW)] of the light exposed shoots were significantly less compared to the control (2.86 ± 0.18 mg g?1 FW) and natural plant (6.82 ± 0.29 mg g?1 FW). HPLC analysis of shoot extracts revealed the presence of 0.14 ± 0.03, 0.16 ± 0.02 and 1.45 ± 0.16 mg g?1 DW hyperforin in wild plant, control shoot cultures and etiolated shoot cultures illuminated for 25 days, respectively. Despite a reasonable presence in etiolated shoots (0.61 ± 0.15 g?1 FW), total phenols did not increase significantly during illumination. The results indicate light induced synthesis of anti-depressant phenolic derivatives (hypericin, hyperforin and flavonoids) in etiolated shoot cultures of H. hookerianum.  相似文献   

2.
Two efficient regeneration systems were developed in Cunninghamia lanceolata, the most important conifer for industrial wood production in China. Cotyledons and hypocotyls derived from greenhouse-grown seedlings were used as initial explants in our research. A high frequency (95.1?±?1.84%) of adventitious buds were initiated directly from cotyledons cultured on Douglas-fir cotyledon revised (DCR) medium supplemented with 1 mg l?1 benzyladenine (BA), 0.1 mg l?1 α-naphthaleneacetic acid (NAA), and 0.004 mg l?1 thidiazuron (TDZ) with a maximum mean number of adventitious buds per cotyledon explant of 3.76?±?0.08. In contrast, a high percentage (93.73?±?0.55%) of adventitious buds regenerated via callus produced from hypocotyls cultured on DCR medium supplemented with plant growth regulators with a maximum number of adventitious buds per explant (16.71?±?0.34). Adventitious buds elongated on DCR medium supplemented with 0.2 mg l?1 BA and 0.02 mg l?1 NAA. After liquid pretreatment with 50 mg l?1 indole-3-butyric acid (IBA), over 95% of the shoots successfully rooted on ½ DCR medium supplemented with 0.3 mg l?1 IBA. The innovated systems reported in this study will be useful tools for future genetic manipulation of C. lanceolata and may be adapted for large-scale propagation in other conifers.  相似文献   

3.
In vitro flowering is an alternative breeding tool for generating hybrid Cucumis spp. as it is able to overcome limitations caused by interspecific incompatibility. The present study describes an efficient method for induction of multiple shoots and in vitro flowering from shoot tip explants of cucumber (Cucumis sativus L.). Shoot tip explants were excised from 7-day-old seedlings and cultured on Murashige and Skoog (MS) medium fortified with different concentrations of 6-benzylaminopurine (BAP; 0.5–2.5 mg/L) alone or in combination with 0.5 mg/L kinetin (KIN). The highest frequency (93.1%) of multiple shoot formation with maximum number of shoots (15.2 shoots/explant) was achieved on MS medium supplemented with 1.0 mg/L BAP. For in vitro flowering, shoots were cultured on MS medium supplemented with 0.5 mg/L BAP and different concentrations of sucrose. Flowering occurred on about 95% of in vitro shoots cultured on MS medium fortified with 6% (w/v) sucrose and 0.5 mg/L BAP after 15 d. For rooting, shoots (>2 cm) were cultured on MS medium augmented with various concentrations of indole-3-butyric acid (IBA; 0.5–2.5 mg/L) alone or in combination with 0.5 mg/L KIN. Among the combinations tested, supplementation with IBA (1.5 mg/L) and KIN (0.5 mg/L) induced maximum rooting rates (95.4%) with 7.8 roots/shoot. Rooted plantlets were successfully transferred into plastic cups containing a mixture of soil and sand (1:1), established in the greenhouse, and subsequently acclimatized in the field. The in vitro flowering reported in this study may facilitate rapid hybridization in Cucumis species and offers a model system for studying the physiological mechanisms involved in flowering.  相似文献   

4.
Leaf, cotyledon, and hypocotyl explants were obtained from 3-week-old seedlings of open-pollinated ‘Golden Delicious’ (Malus domestica bork H.) grown in vitro. They were placed on modified Murashige and Skoog (MS) medium containing B5 vitamins, sucrose and agar, supplemented with 6-benzylaminopurine (BAP) and α-naphthaleneacetic acid (NAA), and maintained at 25°C±2 in the light or in the dark to assess morphogenetic responses. Leaf and cotyledon explants cultured in the dark for an initial 3 weeks, then transferred to light for 4 weeks, produced 5- to 20-fold more adventitious shoots than those cultured for 7 weeks in the light. Conversely, light did not significantly influence the number of adventitious shoots formed on hypocotyl explants. Five-minute daily exposures of leaf explants to red light (651 nm) suppressed adventitious shoot formation by 80%; five-minute exposure to far-red light (729 nm) immediately following the red light counteracted the red suppression. Seedling explants, immature fruit halves and immature embryos were also cultured on Schenk and Hildebrandt (SH) medium containing 2, 4-dichlorophenoxyacetic acid (2, 4-D), p-chlorophenoxyacetic acid (CPA) and kinetin. Light inhibited callus formation on leaf and cotyledon explants, but not on hypocotyl explants. The derived callus was placed on MS + BAP or MS + BAP + NAA for shoot regeneration. Both shoots and roots regenerated from callus placed in the dark but not in the light; the frequency of shoot regeneration was 5% or less. Regenerated shoots were rooted on MS macronutrient salts (1/3 concentration), micronutrients, i-inositol, thiamine HCl, sucrose and agar with or without indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), or NAA under a light intensity of 5.0 W.m-2 (16 h per day). Auxin concentration strongly influenced root morphology.  相似文献   

5.
Hairy root lines were induced from leaf explants of Rauwolfia serpentina known to contain high levels of reserpine (0.0882 % DW) content. Out of five high yielding hairy root lines, three (R1, R14 and R15) exhibited spontaneous regeneration of shoots after 6–8 weeks in liquid B5 medium. Excised regenerated shoots underwent robust shoot proliferation when cultured on Murashige and Skoog (MS) medium supplemented with 0.1 mg/l naphthanleneacetic acid (NAA) and 1.0 mg/l 6-benzyladenine. When shoots were transferred to a root induction medium, consisting of MS basal medium and 1.0 mg/l NAA, all rooted within 2–3 weeks. Of a total of 45 plants developed from three different hairy root lines, 30 were successfully acclimatized and transferred to the green house. Almost 90 % of these plants grown in the green house showed no observed phenotypic differences, while 10 % were stunted and grew poorly, in comparison to non-transformed plants. Phenotypic assessment of regenerated plants for plant length, number of nodes and intermodal lengths, number of leaves per node, leaf color, leaf size, number of flowering shoots, flower size, fruit size, lateral root branching and root biomass was conducted. Polymerase chain reaction and Southern blot hybridization revealed that all plants derived from hairy roots carried the Ri TL-DNA fragment. Moreover for plants derived from transgenic hairy root line R14, presence of more than a single transgene copy number was observed, and this might have contributed to observed abnormal phenotypes. Analysis of reserpine content revealed that roots of regenerated plants had similar levels (0.0889 % DW) to those of their corresponding hairy roots.  相似文献   

6.
Withania somnifera (L) Dunal, commonly known as ashwagandha or Indian ginseng, is the source of large number of pharmacologically active withanolides. Withaferin-A (WS-3), a major withanolide of W. somnifera, has been proven to be an effective anti-cancer molecule. In this study, a liquid culture system for shoot proliferation, biomass accumulation and withaferin-A production of an elite accession (AGB002) of W. somnifera was investigated. The nodal explants cultured on Murashige and Skoog (MS) semi-solid medium supplemented with various concentrations of 6-benzyl adenine (BA) and Kinetin (Kn) elicited varied responses. The highest number of regenerated shoots per ex-plant (35?±?3.25) and the maximum average shoot length (5.0?±?0.25 cm) were recorded on MS medium supplemented with BA (5.0 μM). The shoots were further proliferated in half and full strength MS liquid medium supplemented with the same concentration BA. It was interesting to note that shoots cultured on MS half strength liquid medium fortified with 4 gL-1 FW (fresh weight) shoot inoculum mass derived from 5 week old nodal explants of W. somnifera showed highest accumulation of biomass and withaferin A content in 5 weeks. Withaferin A was produced in relatively high amounts (1.30 % and 1.10 % DW) in shoots cultured in half and full strength MS liquid media respectively as compared to natural field grown plants (0.85 % DW). A considerable amount of the withaferin A was also excreted in the culture medium. Successful proliferation of shoots in liquid medium and the synthesis of withaferin A in vitro opens new avenues for bioreactor scale-up and the large-scale production of the compound.  相似文献   

7.
Nodal explants of in vivo plants and in vitro seedlings of Wattakaka volubilis were cultured on Murashige and Skoog medium fortified with various concentrations of cytokinins — BA (0.5–5 mg l?1), KN (0.5–10 mg l?1),TDZ (0.05–1 mg l?1) either singly or in combination with NAA (0.1 mg l?1). KN proved best for inducing healthy shoots in both in vitro and in vivo derived explants. Maximum number of shoots (14.1±0.84) with 80% regeneration frequency was obtained from nodal explants of seedlings cultured on 5 mg 1?1 KN + 0.1 mg l?1 NAA. In vivo nodal explants produced a maximum of 4.2 shoots on MS medium fortified with 2 mg l?1 BA+0.1 mg l?1 NAA. The differentiated shoots from both could be rooted with 85% frequency on 1/2 strength MS medium (1% sucrose) with 0.6% agar + 1 mg l?1 IBA + 0.2 mg l?1 KN. Rooted shoots were transplanted to vermiculite-soil (3:1) mixture in polyethylene covered pots with 45% transplantation success. Peroxidase isozymes (native PAGE) analysis helped to verify the variation in regenerated plants.  相似文献   

8.
Shoot tip explants prepared from seedlings of ML-267 genotype of green gram were inoculated on MSB5 medium supplemented with BAP (0–20 μM) individually or in combination with minimal concentration of auxins (NAA/IAA/IBA) for adventitious shoots formation. BAP alone without auxins was observed to be efficient in multiple shoot induction and optimum shoot proliferation was achieved on MSB5 medium containing 10 μM BAP with 100?% shoot induction frequency. 3-day-old explants gave best shoot multiplication response and the mean shoot number decreased significantly in 4-day and 5-day-old explants. The induced shoots rooted profusely on ½ MSB5?+?2.46 µM IBA and about 90?% of the plantlets survived after acclimatization and set seed normally. Shoot tip explants infected with A.tumefaciens (LBA4404) harboring pCAMBIA 2301?+?AnnBj1 recombinant vector. Various factors which influence the competence of transformation were optimized based on the frequency of transient GUS expression in shoot tip explants. Optimum levels of transient GUS expression were recorded at pre-culture of explants for 2 days, infection for 10 min with Agro-culture of 0.8 OD and co-cultivation for 3 days on co-cultivation medium containing 100 µM acetosyringone in dark at 23?°C. Putative transformed shoots were produced on selection medium (shoot inductionmedium with100 mg/l kanamycin and 250 mg/l cefotaxim). PCR analysis confirmed the presence of AnnBj1, nptII, and uidA genes in T0 plants. Stable GUS activity was detected in flowers of T0 plants and leaves of T1 plants. PCR analysis of T1 progeny revealed AnnBj1 gene segregated following a Mendelian segregation pattern.  相似文献   

9.
The objective of the present study was to develop a protocol for in vitro plantlet regeneration and Agrobacterium tumefaciens-mediated genetic transformation using immature cotyledon explants of Indian Kino tree (Pterocarpus marsupium Roxb.). Immature cotyledon explants excised from 9-day-old axenic seedlings produced optimal callus on Murashige and Skoog (MS) medium supplemented with 1.07 μM α-naphthalene acetic acid (NAA), after 2 weeks of culture. When the above said callus was incubated on MS + 8.90 μM 6-benzylaminopurine (BAP) + 1.07 μM NAA, a regeneration frequency of 60.41 % with shoot number and length 12.2 ± 0.85 and 1.4 ± 0.13, respectively, was observed. For further shoot multiplication and elongation, these cultures were transferred onto MS + 4.40 μM BAP. Elongated shoots dipped in 19.60 μM indole-3-butyric acid (IBA) for 24 h and then cultured on ½MS + 2.85 μM IBA, 75 % shoots developed roots and 95 % of plantlets survived in field condition. Organogenic callus was co-cultivated with the A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301with ß-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes and grown on MS + 8.90 μM BAP + 1.07 μM NAA (RM) + 200 μM acetosyringone for 2 days and then transferred to MS + 8.90 μM BAP + 1.07 μM NAA + 20 mg/l hygromycin + 250 mg/l cefotaxime (SIM) and 4.40 μM BAP + 15 mg/l hygromycin + 200 mg/l cefotaxime (SEM). The putatively transformed shoots were subsequently rooted on ½MS + 2.85 μM IBA + 20 mg/l hygromycin (SRM), after pulse treatment for 24 h with 19.60 μM IBA. Successful gene transfer into putatively transformed plantlets was confirmed by histochemical GUS assay, PCR and RT-PCR analysis. Southern blot analysis of regenerated plantlets confirmed the integration of hpt gene in transgenic plantlets. In the present study, a rate of 20.92 % transformation frequency was achieved and the genetic transformation protocol presented here may pave way for genetic manipulation of this multipurpose legume tree.  相似文献   

10.
Linum usitatissimum: L. is well-known for production of pharmacologically important secondary metabolites. Due to their tremendous beneficial effects on human health, these compounds are receiving greater attention throughout the World, especially in the treatment of various types of cancers. In present study, we have developed an efficient protocol for production of lignans like secoisolariciresinol diglucoside (SDG) and lariciresinol diglucoside (LDG) and neo-lignans like dehydrodiconiferyl alcohol glucoside (DCG) and guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG) by exploiting in vitro callus cultures of Flax. These cultures were established from stem and leaf explants, inoculated on Murashige and Skoog (MS) media supplemented with various concentrations of α-naphthalene acetic acid (NAA), thidiazuron (TDZ) and 6-benzyl adenine (BA). Results revealed that the leaf-derived calli (1.0 mg/l NAA) accumulated highest levels of biomass (DW; 15.7 g/l) and antioxidant activity, while highest production of total phenolics (111.09 mg/l) and flavonoids (45.02 mg/l) were observed in stem-derived calli (1.0 mg/l NAA). The high-performance liquid chromatography (HPLC) analysis revealed that the stem-derived calli (1.0 mg/l NAA) accumulated optimum concentrations of SDG (2.7?±?0.021 mg/g DW), LDG (9.8?±?0.062 mg/g DW) and DCG (13.8?±?0.076 mg/g DW), while leaf-derived calli (1.0 mg/l NAA) showed optimum accumulation of GGCG (3.8?±?0.022 mg/g DW) as compared to all other treatments. These results provided definite evidence that the NAA differentially influence the production of lignans and neo-lignans in callus culture of Flax. This study opens new dimensions to devise strategies to enhance the production of these valuable metabolites.  相似文献   

11.
Apple has become a model species for Rosaceae genetic and genomic research, but it is difficult to obtain transgenic apple plants by Agrobacterium-mediated transformation using in vitro leaves as explants. In this study, we developed an efficient regeneration and Agrobacterium-mediated transformation system for crab apple (Malus micromalus) using cotyledons as explants. The proximal cotyledons of M. micromalus, excised from seedlings that emerged from mature embryos cultured for 10–14 d in vitro, were suitable as explants for regeneration and Agrobacterium-mediated transformation. Cotyledon explants were cocultivated for 3 d with Agrobacterium tumefaciens strain EHA105 harboring the binary vector pCAMBIA2301 on regeneration medium. Kanamycin-resistant buds were produced on cotyledon explants cultured on selective regeneration medium containing 20 mg/L kanamycin. Acetosyringone supplemented in the Agrobacterium suspension or in the cocultivation medium slightly enhanced the regeneration of kanamycin-resistant buds. The maximum percentage of explants with kanamycin-resistant buds was 11.7%. The putative transformed plants were confirmed by histochemical analysis of β-glucuronidase activity and the polymerase chain reaction amplification of the neomycin phosphotransferase II gene. This transformation system also enables recovery of nontransformed isogenic controls developed from embryo buds and is therefore suitable for functional genomics studies in apple.  相似文献   

12.
A rapid, prolific and reproducible protocol for in vitro shoot regeneration from mature cotyledons of Platanus acerifolia has been developed. The influences of different plant growth regulator (PGR) combinations and donor seedling ages on shoot regeneration were investigated. The results showed that the application of BA in conjunction with NAA was the most effective PGR combination for the induction of shoot regeneration. When cotyledon explants of 5-day-old seedlings were incubated on MS basal medium supplemented with 4.0 mg L?1 BA and 0.2 mg L?1 NAA, 67.6?±?4.9% of the cotyledon segments produced adventitious shoots. These regenerated shoots were initially formed as stunted rosette cluster forms and were encouraged to elongate to produce distinct shoots by transfer onto MS medium containing 0.5 mg L?1 BA and 0.05 mg L?1 NAA; the resulting mean number of adventitious shoots per explant was 5.81?±?0.36. The elongated shoots were readily induced to root (i.e. 89.3% of shoots) by incubation on ½-strength MS medium supplemented with 0.1 mg L?1 IBA. This is the first report of an efficient in vitro shoot regeneration protocol for P. acerifolia through direct organogenesis using cotyledon explants. Hence, this provides a more efficient basis for the Agrobacterium-mediated genetic transformation of Platanus than previously available.  相似文献   

13.
Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0 mg/l) and 6-benzyladenine (BA, 2.0 mg/l), while 0.5 mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30 days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495 g/flask) as compared to control (1.63 g/flask), while red light showed growth inhibition (1.025 g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56 mg GAE/g DW), total phenolic production (TPP; 101 mg/flask) as compared to control (5.44 mg GAE/g DW; 82.2 mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33 mg RE/g DW) and total flavonoid production (TFP; 65 mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in adventitious root cultures of S. rebaudiana and of other medicinal plants.  相似文献   

14.
Using 6 culture media (12, 12D, 12G, 11, A and B) made up of MS medium (Murashige-Skoog, 1962) supplemented or not with glycerine, with different cytokinins, and/or 2,4-D, the morphological characteristics and contents in total carbohydrates, reducing sugars, sucrose and starch were studied in calli induced from explants (cotyledon, petiole, hypocotyl and leaf) obtained from Medicago strasseri seedlings. Callus formation was induced under photoperiod (16h light/8h darkness) conditions or in the absence of light. Considerable variability in the calli was observed, depending on the explants and media used. Under photoperiod conditions, medium A with KIN (1 mg/l) and 2,4-D (3 mg/l) induced many calli with the highest contents in total carbohydrates (886.1–889.3 mg/g DW), sucrose (132.1–188.2 mg/g DW) and starch (125.2–247.6 mg/g DW) and the lowest contents in reducing sugars (118.4–173.3 mg/g DW). In media 11, A and B, under conditions of darkness, calli degenerated at the start of culture. Calli developed in darkness generally had dry weights and total carbohydrate and starch contents lower than those cultured under photoperiod conditions. However, sucrose contents were greater in calli formed in darkness. At these cultures times, differentiation, in the form of organogenesis, was only seen using medium B with cotyledons, petioles and leaves as explants. It was also observed when petioles were cultured in medium A but with a less pronounced organogenic response.  相似文献   

15.
Artemisia pallens is an important medicinal plant. In-vitro regeneration and multiplication of A. pallens have been established using attached cotyledons. Different growth regulators were considered for regeneration of multiple shoots. An average of 36 shoots per explants were obtained by culturing attached cotyledons on Murashige and Skoog’s medium containing 2 mg/L BAP and 0.1 mg/L NAA, after 45 days. The shoots were rooted best on half Murashige and Skoog’s medium with respect to media containing 1 mg/L IBA or 1 mg/L NAA. Different parameters such as type of bacterial strains, OD600 of bacterial culture, co-cultivation duration, concentration of acetosyringone and explants type were optimized for transient expression of the reporter gene. Agrobacterium tumefaciens harbouring pCambia1301 plasmid carrying β-glucuronidase as a reporter gene and hygromycin phosphotransferase as plant selectable marker genes were used for genetic transformation of A. pallens. Hygromycin lethality test showed concentration of 15 mg/L were sufficient to inhibit the growth of attached cotyledons and multiple shoot buds of nontransgenics in selection media. Up to 83 % transient transformation was found when attached cotyledons were co-cultivated with Agrobacterium strain AGL1 for 2 days at 22 °C on shoot induction medium. The bacterial growth was eliminated by addition of cefotaxime (200 mg/L) in selection media. T0 transgenic plants were confirmed by GUS histochemical assay and further by polymerase chain reaction (PCR) using uidA and hpt gene specific primers. The study is useful in establishing technological improvement in A. pallens by genetic engineering.  相似文献   

16.
Morphogenesis was induced in Eucalyptus globulus seeds, cotyledons, hypocotyls and leaves from in vitro clonal plantlets. Globular structures were observed after 2 weeks induction on B5 culture medium supplemented with 10% coconut water, 0.05–0.5 mg l?1 6-benzylaminopurine (BAP) and 0.5 mg l?1 indole-3-butyric acid (IBA). These continued to proliferate under dark conditions until the 2nd to 3rd subculture. Following transfer to a photoperiod of 16 h light, shoots evolved from these globular structures and developed further to plantlets. The influence of several factors, including culture medium composition, sucrose concentration, the type, concentration and combination of growth regulators and the presence of coconut water was studied. The percentage of explants showing globular structure formation and the number of globular structures per explant were evaluated. Macroscopic, histological and scanning electron microscopic studies revealed that the morphogenic process involved mainly organogenic nodules with fewer globular somatic embryos. The nodules gave rise to shoots and subsequently complete plants following incubation on B5 Gamborg medium containing 0.5 mg l?1 IBA and 30 g l?1 sucrose, which promoted root formation.  相似文献   

17.
Sapium sebiferum is a potential bioenergy plant that can be cultivated under various soil, water and climate conditions for both oil-rich seeds and woody biomass. An efficient protocol for regenerating triploid plants of S. sebiferum was established using mature endosperms as explants. Green and compact calli were induced from endosperms within 30 days on Murashige and Skoog medium (MS) containing 1.0–5.0 mg/l 6-benzylaminopurine (BAP) or in combination with 0.2 mg/l α-naphthalene acetic acid (NAA). Within 45 days after endosperm-derived calli were cut into pieces and cultured on media supplemented with 1.0–2.0 mg/l BAP alone or plus 0.1 mg/l NAA, more than 60 % of the callus explants initiated adventitious buds. The buds elongated into shoots after transfer onto a MS medium containing 0.1 mg/l BAP and 1.0 g/l activated charcoal. Approximate 80 % of shoots rooted on a MS medium amended with 1.0 g/l activated charcoal and 1.0 or 2.0 mg/l indole-3-butyric acid within 30 days. The triploidy of the endosperm-derived plantlets was confirmed by flow cytometric analysis, and the triploid plants grew normally after transplantation.  相似文献   

18.
Dioscorea birmanica Prain & Burkill is a Thai medicinal plant, which is often used with other medicinal plants for the treatment of cancers, AIDS, and septicemia diseases. Large numbers of this desirable plant can be produced using the plant tissue culture techniques. The objectives of this study were to investigate techniques of in vitro propagation and to examine the bioactive compounds: diosgenin-3-O-α-l-rhamnopyranosyl (1 → 2)–β-d-glucopyranoside (DBS1) content, total phenolic content, and antioxidant activity of the regenerated shoots compared to those of rhizomes growing in the field. For shoot induction, the highest numbers of shoots (2.8 ± 0.5) and nodes per shoot (5.7 ± 0.8) occurred after the single-nodal explants were cultured on Murashige and Skoog (MS) medium supplemented with 2 mg/l BA (6-benzyladenine) for 4 weeks. Shoot multiplication was achieved on MS medium supplemented with 0.01 % activated charcoal (AC) and 2 mg/l BA in combination with 0.1 mg/l IAA or 0.2 mg/l NAA. The regenerated shoots were rooted on ½ MS medium supplemented with 0.01 % AC, 2 mg/l BA and 4 mg/l NAA for 8 weeks. The survival percentage was 71.88 and small rhizomes developed after transplanting for 4–6 weeks. The quantities of 0.37 ± 0.03 % (w/w) DBS1, 44.24 ± 8.47 mg GAE/g dry extract total phenolic and DPPH radical scavenging assay with EC50 value of 53.67 ± 4.16 µg/ml were determined from the regenerated shoots, while 3.27 ± 0.04 % (w/w) DBS1, 259.67 ± 7.34 mg GAE/g dry extract total phenolic and DPPH radical scavenging assay with EC50 value of 11.42 ± 3.28 µg/ml were found in the mother rhizomes.  相似文献   

19.
High frequency multiple shoots have been induced from nodal segments of Rhinacanthus nasutus (L.) Kurz., a potent anticancerous ethnomedicinal plant. For initiation of cultures, nodal segments were cultured on MS medium supplemented with various concentrations (1.0–5.0 μM) of 6-benzyladenine or thidiazuron (TDZ) alone or in combination with α-naphthalene acetic acid (NAA 0.5–1.0 μM). The optimum frequency of response (85 %) and shoot number (3.3) was observed on MS medium supplemented with 4.0 μM TDZ and 0.8 μM NAA. The shoots developed on initiation media were excised and nodal segments were subcultured on MS medium supplemented with TDZ (4.0 μM) and NAA (0.5–1.0 μM). This subculturing process was repeated thrice, each with 45 days of duration and the multiple shoot formation was recorded at the end of every subculture stage. The highest frequency of response (100 %) and number of multiple shoots (24.1) per explant were recorded at the end of the third subculture passage on MS medium supplemented with 4.0 μM TDZ and 0.8 μM NAA. The optimum rooting of shoots was observed on ½ MS medium fortified with 3.0 μM indole-3-butyric acid. The rooted plants were successfully transplanted to soil. The estimation of rhinacanthin (RC) content in shoots and roots was carried out in 6-month-old ex vitro plants (i.e., plants regenerated via in vitro culture) and field grown natural plants by high performance liquid chromatography. Both shoots and roots of naturally grown plants showed slightly higher RC content than ex vitro grown plants. The highest RC content (4.6 mg/g DW RC-C, 0.14 mg/g DW RC-D and 0.10 mg/g DW RC-N) was recorded in roots of naturally grown plants.  相似文献   

20.
The influence of Gracilaria edulis and Sargassum wightii extracts was investigated for the production of biomass and withanolides in the multiple shoot suspension culture of Withania somnifera. Supplementation of 40 % G. edulis extract in MS liquid medium for 24 h exposure time in the culture recorded the highest biomass accumulation [62.4 g fresh weight and 17.82 g dry weight (DW)] and withanolides production (withanolide A 0.76 mg/g DW; withanolide B 1.66 mg/g DW; withaferin A 2.80 mg/g DW and withanone 2.42 mg/g DW) after 5 weeks of culture, which were 1.45–1.58-fold higher than control culture. This naturally available G. edulis extract-treated multiple shoot suspension culture protocol offers a potential alternative for the optimum production of biomass and withanolides utilizing shake-flasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号