首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of nisin F as an antimicrobial agent in treating subcutaneous skin infections was tested in vivo by infecting C57BL/6 mice with a bioluminescent strain of Staphylococcus aureus (Xen 36). Strain Xen 36 has the luxABCDE operon located on a native plasmid. Mice were grouped into four groups: Infected with strain Xen 36 and treated with nisin F, infected with strain Xen 36 and treated with saline (placebo), not infected and treated with nisin (control) and not infected and not treated (control). The immune systems of the mice were suppressed with deksamethasone. Mice were treated with either nisin F or sterile physiological saline 24 and 48 h after infection with subcutaneously injected S. aureus Xen 36 (4 × 106 CFU). Histology and bioluminescent flux measurements revealed no significant difference between infected mice treated with nisin and saline, respectively. However, infected mice treated with nisin F had an increased number of polymorphonuclear cells when compared with infected mice treated with saline. Also, not infected mice treated with nisin F had an influx of polymorphonuclear cells. Nisin F is thus ineffective in combating deep dermal staphylococcal infections. The apparent immune modulation of nisin when subcutaneously injected has to be investigated.  相似文献   

2.
Mice intragastrically infected with Listeria monocytogenes EGDe and Staphylococcus aureus Xen 36 showed no visible signs of infection over 48 h. However, high numbers (6.2 × 105 cfu/mg feces) of S. aureus Xen 36 were detected 4 h, and 3.3 × 105 cfu/mg feces of L. monocytogenes EGDe 8 h, after administration. Mice intraperitoneally infected with S. aureus Xen 36 (1 × 107 cfu) developed infection immediately after administration and for at least the following 48 h. Injection with higher cell numbers of S. aureus Xen 36 (2 × 108 cfu) resulted in more intense bioluminescence (infection) of the peritoneal cavity. Injection of S. aureus Xen 36 in the tail and penile veins resulted in localized tissue infection for the first 120 h. Injection of S. aureus Xen 36 into the thigh produced a faint bioluminescent signal for 15 min. Nisin F injected into the peritoneal cavity at the same area of infection led to an immediate statistically significant decrease in infection (from 2 × 106 p/s/cm2/sr to 3 × 105 p/s/cm2/sr) within 2 h. Similar results were recorded when nisin F was injected subcutaneously. Intraperitoneal administration is an optimal administration route for bacterial infection and treatment with antimicrobial peptides.  相似文献   

3.
The aim of this study was to evaluate the antibacterial effect of nisin-loaded chitosan/alginate nanoparticles as a novel antibacterial delivery vehicle. The nisin-loaded nanoparticles were prepared using colloidal dispersion of the chitosan/alginate polymers in the presence of nisin. After the preparation of the nisin-loaded nanoparticles, their physicochemical properties such as size, shape, and zeta potential of the formulations were studied using scanning electron microscope and nanosizer instruments, consecutively. FTIR and differential scanning calorimetery studies were performed to investigate polymer–polymer or polymer–protein interactions. Next, the release kinetics and entrapment efficiency of the nisin-loaded nanoparticles were examined to assess the application potential of these formulations as a candidate vector. For measuring the antibacterial activity of the nisin-loaded nanoparticles, agar diffusion and MIC methods were employed. The samples under investigation for total microbial counts were pasteurized and raw milks each of which contained the nisin-loaded nanoparticles and inoculated Staphylococcus aureus (ATCC 19117 at 106 CFU/mL), pasteurized and raw milks each included free nisin and S. aureus (106 CFU/mL), and pasteurized and raw milks each had S. aureus (106 CFU/mL) in as control. Total counts of S. aureus were measured after 24 and 48 h for the pasteurized milk samples and after the time intervals of 0, 6, 10, 14, 18, and 24 h for the raw milk samples, respectively. According to the results, entrapment efficiency of nisin inside of the nanoparticles was about 90–95%. The average size of the nanoparticles was 205 nm, and the average zeta potential of them was ?47 mV. In agar diffusion assay, an antibacterial activity (inhibition zone diameter, at 450 IU/mL) about 2 times higher than that of free nisin was observed for the nisin-loaded nanoparticles. MIC of the nisin-loaded nanoparticles (0.5 mg/mL) was about four times less than that of free nisin (2 mg/mL). Evaluation of the kinetic of the growth of S. aureus based on the total counts in the raw and pasteurized milks revealed that the nisin-loaded nanoparticles were able to inhibit more effectively the growth of S. aureus than free nisin during longer incubation periods. In other words, the decrease in the population of S. aureus for free nisin and the nisin-loaded nanoparticles in pasteurized milk was the same after 24 h of incubation while lessening in the growth of S. aureus was more marked for the nisin-loaded nanoparticles than the samples containing only free nisin after 48 h of incubation. Although the same growth reduction profile in S. aureus was noticed for free nisin and the nisin-loaded nanoparticles in the raw milk up to 14 h of incubation, after this time the nisin-loaded nanoparticles showed higher growth inhibition than free nisin. Since, generally, naked nisin has greater interactions with the ingredients present in milk samples in comparison with the protected nisin. Therefore, it is concluded that the antibacterial activity of nisin naturally decreases more during longer times of incubation than the protected nisin with the chitosan/alginate nanoparticles. Consequently, this protection increases and keeps antibacterial efficiency of nisin in comparison with free nisin during longer times of storage. These results can pave the way for further research and use of these nanoparticles as new antimicrobial agents in various realms of dairy products.  相似文献   

4.
Aims: To determine if nisin F‐loaded self‐setting brushite cement could control the growth of Staphylococcus aureus in vivo. Methods and Results: Brushite cement was prepared by mixing equimolar concentrations of β‐tricalcium phosphate and monocalcium phosphate monohydrate. Nisin F was added at 5·0, 2·5 and 1·0% (w/w) and the cement moulded into cylinders. In vitro antibacterial activity was determined using a delayed agar diffusion assay. Release of nisin F from the cement was determined using BCA protein assays. Based on scanning electron microscopy and X‐ray diffraction analysis, nisin F did not cause significant changes in cement structure or chemistry. Cement containing 5·0% (w/w) nisin F yielded the most promising in vitro results. Nisin F‐loaded cement was implanted into a subcutaneous pocket on the back of mice and then infected with S. aureus Xen 36. Infection was monitored for 7 days, using an in vivo imaging system. Nisin F prevented S. aureus infection for 7 days and no viable cells were isolated from the implants. Conclusions: Nisin F‐loaded brushite cement successfully prevented in vivo growth of S. aureus. Significance and Impact of the Study: Nisin F incorporated into bone cement may be used to control S. aureus infection in vivo.  相似文献   

5.
An effective antimicrobial packaging or food contact surface should be able to kill or inhibit micro-organisms that cause food-borne illnesses. Setting up such systems, by nisin adsorption on hydrophilic and hydrophobic surfaces, is still a matter of debate. For this purpose, nisin was adsorbed on two types of low-density polyethylene: the hydrophobic native film and the hydrophilic acrylic acid-treated surface. The antibacterial activity was compared for those two films and it was highly dependent on the nature of the surface and the nisin-adsorbed amount. The hydrophilic surfaces presented higher antibacterial activity and higher amount of nisin than the hydrophobic surfaces. The effectiveness of the activated surfaces was assessed against Listeria innocua and the food pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. S. aureus was more sensitive than the three other test bacteria toward both nisin-functionalized films. Simulation tests to mimic refrigerated temperature showed that the films were effective at 20 and 4 °C with no significant difference between the two temperatures after 30 min of exposure to culture media.  相似文献   

6.
The antimicrobial drug candidate 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate (SBC3) was evaluated for its ability to function in vivo using larvae of Galleria mellonella. A SBC3 concentration of 25 μg/ml inhibited the growth of Staphylococcus aureus by 71.2 % and Candida albicans by 86.2 % in vitro. Larvae inoculated with 20 μl of SBC3 solution showed no ill effects up to a concentration of 250 μg/ml but administration of 500 μg/ml resulted in a 40 % reduction in larval survival and administration of a dose of 1,000 μg/ml resulted in total larval death at 24 h. Larvae inoculated with S. aureus or C. albicans and subsequently administered SBC3 showed increased survival. Administration of SBC3 to larvae did not boost the insect immune response as indicated by lack of an increase in the density of circulating haemocytes (immune cells). The abundance of a number of proteins involved in the insect immune response was reduced in larvae that received 20 μl SBC3 solution of 100 μg/ml. This is the first demonstration of the in vivo activity of SBC3 against S. aureus and C. albicans and demonstrates that SBC3 does not stimulate a non-specific immune response in larvae.  相似文献   

7.
The strain Lactobacillus plantarum DM5 was isolated from fermented beverage Marcha of Sikkim and explored for its antagonistic activity against food-borne pathogens. The cell-free supernatant of L. plantarum DM5 showed antibacterial activity of 6,400 AU/mL in MRS medium (pH 6.0) against the indicator strain Staphylococcus aureus. MRS medium supplemented with 15 g/L of maltose at 37 °C under static condition yielded highest antimicrobial activity (6,400 AU/mL) with 3 % increase in specific activity when compared to 20 g/L glucose. The antimicrobial compound was heat stable (60 min at 100 °C) and was active over a wide pH range. It showed bactericidal effect on S. aureus and Listeria monocytogenes by causing 96 and 98 % of cell lysis, respectively. The cell morphology of the treated S. aureus and L. monocytogenes was completely deformed as revealed by scanning electron microscopy, suggesting the high potential of L. plantarum DM5 as natural preservatives in food industry. The antimicrobial compound was purified by 80 % ammonium sulphate precipitation and showed antimicrobial activity of 12,800 AU/mL with 19-fold purification and a molecular mass of 15.2 kDa, indicating the proteinaceous nature of the compound.  相似文献   

8.
Traditional microbiological methods are dependent on the growth of microorganisms, and hence require prolonged periods. The methods used to detect resistance in Staphylococcus aureus should have high sensitivity and specificity, yet provide results in a timely manner. The aim of this study was to evaluate the use of Quicolor (QC) ES® agar for the rapid detection of resistance in S. aureus. We evaluated 100 clinical S. aureus isolates. Resistance detection was performed using traditional microbiological methods. Methicillin resistance detection was evaluated using traditional and molecular microbiological methods. Traditional antibiotic susceptibility testing methods, such as disc diffusion, were conducted using QC ES and Mueller–Hinton (MH) media. The plates were incubated at 36 °C for 5, 6 and 24 h. Rapid results obtained using QC ES agar after 5 h of incubation were consistent with those using the overnight procedure with MH agar for 83 of the 100 S. aureus (including methicillin-susceptible S. aureus) strains. However, the correlation for oxacillin between MH (24 h) and QC ES (5 h) was not satisfactory (r = 0.770). The total agreement between QC ES and MH agar was 83 % after 5 h, 89 % after 6 h, and 94 % after 24 h. The accurate and rapid detection of resistance in S. aureus is critical due to the associated therapeutic problems and infection control measures. We believe that the use of QC ES for S. aureus will reduce the delay in resistance detection, thus providing physicians and infection control practitioners with early information for better management.  相似文献   

9.
This study was designed to characterize the physicochemical and molecular properties of Staphylococcus aureus cells treated with nisin, allyl isothiocyanate (AITC), thymol, eugenol, and polyphenol during the transition from planktonic to biofilm growth as measured by hydrophobicity, auto-aggregation, and differential gene expression. Thymol exhibited the highest antimicrobial activity against planktonic, biofilm-forming, biofilm, and dispersed cells, showing 0.21, 0.22, 0.46, and 0.26 mg/ml of MIC values, respectively. The lowest hydrophobicity was observed in planktonic cells treated with polyphenol (16 %), followed by thymol (29 %). The auto-aggregation abilities were more than 85 % for nisin, AITC, eugenol, polyphenol, and the control. The cell-to-surface interaction was related positively to biofilm formation by S. aureus. The adhesion-related gene (clfA), virulence-related genes (spa and hla), and efflux-related gene (mdeA) were down-regulated in both planktonic and biofilm cells treated with AITC, thymol, and eugenol. The results suggest that the antimicrobial tolerance and virulence potential were varied in the cell states during the planktonic-to-biofilm transition. This study provides useful information for understanding the cellular and molecular responses of planktonic and biofilm cells to antimicrobial-induced stress.  相似文献   

10.
Proteases belonging to the M20 family are characterized by diverse substrate specificity and participate in several metabolic pathways. The Staphylococcus aureus metallopeptidase, Sapep, is a member of the aminoacylase-I/M20 protein family. This protein is a Mn2+-dependent dipeptidase. The crystal structure of this protein in the Mn2+-bound form and in the open, metal-free state suggests that large interdomain movements could potentially regulate the activity of this enzyme. We note that the extended inactive conformation is stabilized by a disulfide bond in the vicinity of the active site. Although these cysteines, Cys155 and Cys178, are not active site residues, the reduced form of this enzyme is substantially more active as a dipeptidase. These findings acquire further relevance given a recent observation that this enzyme is only active in methicillin-resistant S. aureus. The structural and biochemical features of this enzyme provide a template for the design of novel methicillin-resistant S. aureus-specific therapeutics.  相似文献   

11.
Staphylococcus aureus is a major and dangerous human pathogen that causes a range of clinical manifestations of varying severity, and is the most commonly isolated pathogen in the setting of skin and soft tissue infections, pneumonia, suppurative arthritis, endovascular infections, foreign-body associated infections, septicemia, osteomyelitis, and toxic shocksyndrome. Honokiol, a pharmacologically active natural compound derived from the bark of Magnolia officinalis, has antibacterial activity against Staphylococcus aureus which provides a great inspiration for the discovery of potential antibacterial agents. Herein, honokiol derivatives were designed, synthesized and evaluated for their antibacterial activity by determining the minimum inhibitory concentration (MIC) against S. aureus ATCC25923 and Escherichia coli ATCC25922 in vitro. 7c exhibited better antibacterial activity than other derivatives and honokiol. The structure-activity relationships indicated piperidine ring with amino group is helpful to improve antibacterial activity. Further more, 7c showed broad spectrum antibacterial efficiency against various bacterial strains including eleven gram-positive and seven gram-negative species. Time-kill kinetics against S. aureus ATCC25923 in vitro revealed that 7c displayed a concentration-dependent effect and more rapid bactericidal kinetics better than linezolid and vancomycin with the same concentration. Gram staining assays of S. aureus ATCC25923 suggested that 7c could destroy the cell walls of bacteria at 1 × MIC and 4 × MIC.  相似文献   

12.
Staphylococcus aureus uses two-component systems (TCSs) to adapt to stressful environmental conditions. To colonize a host, S. aureus must resist bacteriocins produced by commensal bacteria. In a comprehensive analysis using individual TCS inactivation mutants, the inactivation of two TCSs, graRS and braRS, significantly increased the susceptibility to the class I bacteriocins, nukacin ISK-1 and nisin A, and inactivation of vraSR slightly increased the susceptibility to nukacin ISK-1. In addition, two ABC transporters (BraAB and VraDE) regulated by BraRS and one transporter (VraFG) regulated by GraRS were associated with resistance to nukacin ISK-1 and nisin A. We investigated the role of these three TCSs of S. aureus in co-culture with S. warneri, which produces nukacin ISK-1, and Lactococcus lactis, which produces nisin A. When co-cultured with S. warneri or L. lactis, the braRS mutant showed a significant decrease in its population compared with the wild-type, whereas the graRS and vraSR mutants showed slight decreases. Expression of vraDE was elevated significantly in S. aureus co-cultured with nisin A/nukacin ISK-1-producing strains. These results suggest that three distinct TCSs are involved in the resistance to nisin A and nukacin ISK-1. Additionally, braRS and its related transporters played a central role in S. aureus survival in co-culture with the strains producing nisin A and nukacin ISK-1.  相似文献   

13.
Silver nanoparticles possess antibacterial effect for various bacteria; however mechanisms of the interaction between Ag-NPs and bacterial cells remain unclear. The aim of our study was to obtain direct evidence of Ag-NPs penetration into cells of Gram-negative bacterium S. typhimurium and Gram-positive bacterium S. aureus, and to study cell responses to Ag-NPs. The Ag-NPs (most 8–10 nm) were obtained by gas-jet method. S. typhimurium (7.81 × 107 CFU), or S. aureus (8.96 × 107 CFU) were treated by Ag-NPs (0.05 mg/l of silver) in orbital shaker at 190 rpm, 37 °C. Bacteria were sampled at 0.5, 1, 1.5, 2, 5 and 23 h of the incubation for transmission electron microscopy of ultrathin sections. The Ag-NPs adsorbed on outer membrane of S. typhimurium and cell wall of S. auereus; penetrated and accumulated in cells without aggregation and damaging of neighboring cytoplasm. In cells of S. aureus Ag-NPs bound with DNA fibers. Cell responses to Ag-NPs differed morphologically in S. typhimurium and S. aureus, and mainly were presented by damage of cell structures. The cytoplasm of S. aureus became amorphous, while S. typhimurium showed lumping and lysis of cytoplasm which led to formation of “empty” cells. Other difference was fast change of cell shape in S. typhimurium, and late deformation of S. aureus cells. The obtained results showed how different could be responses induced by the same NPs in relatively simple prokaryotic cells. Evidently, Ag-NPs directly interact with macromolecular structures of living cells and are exert an active influence on their metabolism.  相似文献   

14.
A total of 181 ready-to-eat poultry meat samples were examined for the presence of Staphylococcus aureus, and 11 (6 %) were found to have S. aureus contamination. Of 11 S. aureus isolates, 10 (91 %) were resistant to at least one antibiotic used in this study, and 2 were resistant to oxacillin. Lactococcus lactis subsp. lactis was tested as a bio-control agent. All the S. aureus isolates were found to be sensitive to antimicrobial products in L. lactis subsp. lactis supernatants; the zones of inhibition were in the range of 5.0 mm?±?0.70 mm to 19.8 mm?±?0.83 mm with the majority of isolates. As a competitive flora in mixed culture (LAPTg broth) and protective culture in poultry meat, L. lactis subsp. lactis was effective against S. aureus isolates; the growth of S. aureus isolates was almost negative after 32 h incubation in mixed culture. The population of S. aureus was reduced substantially to almost log 1 CFU/g after 25 days of incubation in protective culture. The pH of the test cultures also decreased sharply with time.  相似文献   

15.
Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria.  相似文献   

16.
Nisin A and polymyxin B were tested alone and in combination in order to test their antagonism against Listeria innocua HPB13 and Escherichia coli RR1, respectively. While the combination of both antibacterial substances was synergistically active against both target bacteria, nisin A alone did not show any inhibition of E. coli RR1. The nisin A/polymyxin B combination at 1.56/2.5 μg ml?1 caused lysis of about 35.86 ± 0.35 and 73.36 ± 0.14% of L. innocua HPB13 cells after 3 and 18 h, respectively. Polymyxin B at 0.12 μg ml?1 and nisin A/polymyxin B at 4.64/0.12 μg ml?1 decreased the numbers of viable E. coli RR1 cells by about 0.23 and 0.65 log10 CFU ml?1, respectively, compared to the control. Our data suggest that the concentration of nisin A required for the effective control of pathogenic strains Listeria spp. could be lowered considerably by combination with polymyxin B. The use of lower concentrations of nisin A or polymyxin B should slow the emergence of bacterial populations resistant to these agents.  相似文献   

17.
18.
Sampling for livestock-associated Staphylococcus aureus (LA-SA) in the United States is haphazard. The diversity of LA-S. aureus in the U.S. appears to be greater than in other countries. We review the epidemiology of LA-S. aureus in U.S. pigs, occupationally-exposed individuals, and environmental samples to assess the diversity and abundance of U.S. LA-S. aureus.  相似文献   

19.
Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.  相似文献   

20.
The antimicrobial peptide PMAP-36 is a highly cationic and amphipathic α-helical peptide. PRW4 is a truncated analog that replaces paired lysine residues with tryptophan along the N-terminal and deletes the C-terminal hydrophobic tail of PMAP-36. Studies on the two peptides have already been performed. However, whether there is a synergistic effect with antibiotics has not been investigated, and the study of the antibacterial mechanism of the peptides is inadequate. In this study, antibiotic-peptide combinations were tested against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, and the confocal laser scanning microscopy (LSCM) and DNA gel retardation were measured. The results indicated synergy between the peptides and gentamicin when tested against E. coli [fractional lethal concentration (FLC) < 0.5]; partial synergy was observed between the peptides and gentamicin against S. aureus (0.5 < FLC < 1); and streptomycin showed no reaction with the peptides against E. coli and S. aureus (1 < FLC < 4). LSCM and DNA binding suggest that PMAP-36 was able to translocate across the bacterial membranes and interact with intracellular DNA, but PRW4 presented no DNA-binding ability. These results indicate that the combination of PMAP-36 and PRW4 with aminoglycosides may provide useful information for clinical application, and the antibacterial mechanism of peptides likely does not solely involve cytoplasmic-membrane permeabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号