首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Environmental monitoring of pollen grains in the atmosphere of Melbourne has been achieved using Burkard volumetric traps. Twenty-two families of flowering plants and confiers were identified in the pollen counts. About 62% of these pollen grains belonged to trees, 20% to grasses and 9% to herbs and weedy plants. During spring and summer, the atmosphere contained about 70% of the total annual pollen count. Tree pollen, predominantly elm and cypress, occurred abundantly in late winter and spring, with grass pollen predominantly in spring and early summer. These three types of pollen grains occurred in significant amounts, together accounting for more than 60% of the total annual catch. A seasonal incidence chart (pollen calendar) for Melbourne based on 2 years observation has been constructed. This pollen calendar is useful in identifying sources of allergies against particular seasonal airborne pollen types. Comparison of the time of occurrence of a particular pollen type using the pollen calendar and the time of allergic symptoms, can lead to accurate diagnosis and preventive measures being taken. This study has confirmed that grass pollen is the major source of allergenic pollen in the external environment triggering hay fever and allergic asthma in spring and early summer in Melbourne, Australia.  相似文献   

2.
Airborne pollen was monitored in three major urban centers of the coastal plain of Israel during the years 1993–1995. Results show spatial and temporal variations among the three sites. Altogether, the number of identified species was rather low. Ornamental trees (Cupressaceae,Pinus, Olea, Casuarina, Ceratonia) and grasses, have constituted the main source of the pollen rain. A substantial contribution of the wild plants of the region was restricted toParietaria, Urtica, Mercurialis, Artemisia, grasses and members of the Chenopodiaceae and Amaranthaceae.  相似文献   

3.
The atmospheric pollen of Madras city was surveyed during a 1-year period (January–December 1995) with a vertical cylinder trap. A total of 32 pollen types were identified, among which nine were present throughout the year. These belonged to Poaceae,Casuarina equisetifolia Foster and Foster f.,Prosopis juliflora (SW.) DC.,Acalypha indica L.,Parthenium hysterophorus L., Cyperaceae,Cocos nucifera L., Amaranthaceae, andTypha angustata Borry and Chaub. Among the identified pollen, 61.05% belonged to trees, 21.01% to grasses, 11.65% to herbs and 6.27% to shrubs. Anemophilous pollen contributed about 52.87% to the total while entomophilous and amphiphilous pollen contributed 38.89 and 8.22%, respectively. Pollen belonging to Poaceae were found to be most predominant in the air of Madras city followed byCasuarina equisetifolia andProsopis juliflora.  相似文献   

4.
Continuous aerobiological survey of the atmosphere of Mar del Plata was carried out from December 1991 to November 1993 with a Burkard volumetric spore trap. Daily slides were prepared and studied every 2 h with standard techniques. Weekly records were kept for 27 relevant pollen types selected either by their prevalence or relative high atmospheric concentration. Quantitative multivariate analysis enabled to distinguish three major pollen seasons, related to atmospheric dominance either arboreal pollen (AP) or non-arboreal pollen (NAP). June to October is the richest period in number of pollen types, mainly dominated by AP; while from November to May, there is an overwhelming dominance of NAP types, represented by grass, herb and weed pollen. The study and prediction of this phenomenon is of great interest not only from the ecosystem point of view, but in relation to human disease as well.  相似文献   

5.
Data on predicted average and maximum airborne pollen concentrations and the dates on which these maximum values are expected are of undoubted value to allergists and allergy sufferers, as well as to agronomists. This paper reports on the development of predictive models for calculating total annual pollen output, on the basis of pollen and weather data compiled over the last 19 years (1982–2000) for Córdoba (Spain). Models were tested in order to predict the 2000 pollen season; in addition, and in view of the heavy rainfall recorded in spring 2000, the 1982–1998 data set was used to test the model for 1999. The results of the multiple regression analysis show that the variables exerting the greatest influence on the pollen index were rainfall in March and temperatures over the months prior to the flowering period. For prediction of maximum values and dates on which these values might be expected, the start of the pollen season was used as an additional independent variable. Temperature proved the best variable for this prediction. Results improved when the 5-day moving average was taken into account. Testing of the predictive model for 1999 and 2000 yielded fairly similar results. In both cases, the difference between expected and observed pollen data was no greater than 10%. However, significant differences were recorded between forecast and expected maximum and minimum values, owing to the influence of rainfall during the flowering period. Received: 25 October 2000 / Revised: 26 February 2001 / Accepted: 28 February 2001  相似文献   

6.
The French airborne pollen monitoring network (RNSA) is currently regrouping 70 Hirst-type pollen traps covering the whole French territory. The aim of this paper is to introduce a simple statistical methodology that can be used to characterize pollen spatial variation. This pilot study is restricted to a limited portion of the RNSA network (18 monitoring stations), eight taxa of allergenic relevance, and a 3-year period (2003–2005). The first step of the approach consisted in quantifying the trap-to-trap pollen similarities on the basis of an original index, called mean Pollinic Distance (mPD), that relies on the comparison of pollen concentration time series. Regression analyses were next conducted with different spatial variables. Distance, latitude and altitude differences were identified as significant predictors of pollen variations, as measured by mPD. In order to further characterize pollen spatial properties, cluster analysis was performed with mPD as the distance estimate. Interestingly, the clusters of sites identified on the basis of the similarity of their pollen profiles, correspond to distinct geographic areas that might be interpreted as homogeneous air masses. The results have major implications for monitoring networks management since they provide an objective basis (1) for choosing the relevant scale to elaborate and supply pollen-related information, and (2) for optimizing networks configuration.
Camille RieuxEmail:
  相似文献   

7.
In this study the seasonal and daily variations in olive airborne pollen concentrations were measured in the atmosphere of Sassari (Italy) and the olive pollen emission was monitored in the countryside during the flowering period in 1995 and 1996, in order to detect the patterns of change in the atmosphere. The intensity and the timing of pollination was also studied in relation to phenological stages occurrence. In addition, the influence of the main meteorological parameters on pollen emission and airborne pollen dispersal in the city was assessed. Airborne pollen reached its highest concentration a few days before the peak of pollen emission in 1995 but several days after it in 1996 (6 days). Analysis of hourly concentrations shows that the maximum emission and dispersion recorded during the observation period occurred in the middle of the day. Significant regressions were found between hourly temperature and air humidity values and hourly pollen concentrations recorded in the olive grove for almost every day studied, indicating a negative correlation between humidity and pollen concentration and a positive correlation between pollen concentration and temperature. On the other hand, no significant correlation was observed between the meteorological parameters and pollen concentration recorded in the urban area.  相似文献   

8.
Aim   To reconstruct the history of a Holocene sand dune using pollen and phytolith analyses, and to identify the strengths, weaknesses and compatibility of these two methods in the interpretation of Quaternary coastal environments.
Location  Great Barrier Island, northern New Zealand.
Methods  Pollen and phytolith analyses were carried out on a sequence through a Holocene sand dune containing a palaeosol.
Results  Phytoliths were present throughout the sequence. Grass phytoliths increased at the expense of tree phytoliths following fire disturbance. Pollen (and spores) was preserved only in the palaeosol part of the profile. Pteridium fern spores increased at the expense of tall tree pollen following the fire disturbance.
Main conclusions  Lack of phytolith production by many species and problems of taxonomic specificity in many others restricts the usefulness of phytolith analysis to defining only broad vegetation types. In New Zealand, gymnosperms are invisible in the phytolith record and ferns are extremely under-represented. In contrast, pollen analysis usually provides a great deal of information regarding the composition of a particular vegetation type. The loss of microscopic charcoal fragments during the phytolith extraction process is a disadvantage in the reconstruction of environments where fires have occurred. The greater durability of phytoliths compared with pollen means that phytoliths may be found in sediments where pollen has not been preserved. The phytolith record may also provide evidence of wetter environments that are not apparent in the pollen record. Unlike grass pollen, which is widely dispersed and therefore blurs the spatial record, the presence of grass phytoliths in sediments indicates a local source. The simultaneous application of both methods potentially provides a powerful tool in ecological interpretation and the reconstruction of Quaternary coastal environments.  相似文献   

9.
Airborne pollen in San Carlos de Bariloche was sampled from September to March 2001–2004 with a Hirst-type volumetric spore trap placed at a height of 15 m in a city extending from the humid forests, through the mesic forests, to the steppe. The total amount of pollen recorded varied widely from year to year. The pollen index was 4,395 in the sampling period 2001/2002; 9,055 in 2002/2003 and 2,756 in 2003/2004. The main pollen period extended from October to January. In October, pollen concentration was the highest. Sixty-six pollen types were identified. Cupressaceae and Nothofagus were the major contributors. Betula, Prunus, Pinus and Populus, the most abundant ornamental taxa in the city, also contributed to the pollen record. Pollen of Maytenus and Lomatia was representative of the mesic forest, while pollen in the lower layers of the humid forest was present in trace amounts. Cupressaceae, Nothofagus and Betula prevailed during spring (September–December), and Plantago, Rumex and Poaceae during summer (December–March). The association of daily pollen concentration and meteorological variables, temperature (mean, maximum, minimum), dew point, rainfall and wind speed, was significant. Correlations showed to be negative, with the exception of that to wind speed. The total sum of fungi spores increased from 1,771 in 2001/2002; through 8,441 in 2002/2003 to 13,782 in 2003/2004. Relative concentration rose to 29%, 48% and 84% of the total number of pollen and fungal spores recorded during each sampling period.  相似文献   

10.
The long-term, 26 years’ data set of observations on daily concentrations of airborne grass pollen in Leiden is analyzed to present the variations and trends in quantities, and season starting dates. Monitoring of airborne pollen has been done continuously at one location, with a volumetric pollen trap. Annual totals of daily average grass-pollen concentrations are within a normal range of an urban site between 3690 and 9277, averagely 5510. The annual totals are irregularly fluctuating from year to year, and show no increasing or decreasing trend. Each year’s seasonal fluctuation is different, probably under the influence of changing weather conditions. The typical grass-pollen month is June. Using the Σ 75 criterium, the average starting date is on 16 May, whereas with the 1% threshold criterium the start of the grass-pollen season averagely is on 3 June. The mean air temperature in the preceding period is taken as the main factor for the timing of the season start. Analyzing the relationships of the two different criteria for the season starts with a number of temperature observation periods, the best relations were found between the mean air temperature in the period 11 April to 20 May and the Σ 75 criterium season start on 16 May (r=−0.78); and between the mean air temperature in May and the 1% threshold criterium season start on 3 June (r=−0.76). Forecasts of the season start which are significantly better than the average starting date are only possible with the mean air temperature up to a few days before the actual start. This limits the practical usefulness of the forecasting system.  相似文献   

11.
Marine biodiversity and its distribution in the New Zealand region were determined using historical data for an appropriate indicator taxon, the Bryozoa. Bryozoans were identified as belonging to three communities, termed Intertidal/Shelf/Slope (ISS) and Deep-Sea 1 and 2 (DS1 and DS2). Biodiversity was assessed using measures based on relatedness of species, average taxonomic distinctness and variation in taxonomic distinctness. High values of biodiversity for the ISS community are particularly concentrated at both ends of two main islands of New Zealand; the biogenic substratum of the Three Kings Plateau and Foveaux Strait. High values of biodiversity for the DS1 community were primarily located on the seamounts of the northern edge of the Chatham Rise. Values of biodiversity for stations comprising the DS2 community were generally low. The relationship between bryozoan community composition/biodiversity and depth suggested that habitat availability/heterogeneity, sedimentary perturbation and primary productivity could be evoked to explain the pattern of biodiversity observed. The results of the study indicate particular areas of the shelf and deep-sea environment that could be protected in order to conserve New Zealand's marine biodiversity.  相似文献   

12.
New Zealand has a good Neogene plant fossil record. During the Miocene it was without high topography and it was highly maritime, meaning that its climate, and the resulting vegetation, would be controlled dominantly by zonal climate conditions. Its vegetation record during this time suggests the climate passed from an ever-wet and cool but frostless phase in the Early Miocene in which Nothofagus subgenus Brassospora was prominent. Then it became seasonally dry, with vegetation in which palms and Eucalyptus were prominent and fires were frequent, and in the mid-Miocene, it developed a dry-climate vegetation dominated by Casuarinaceae. These changes are reflected in a sedimentological change from acidic to alkaline chemistry and the appearance of regular charcoal in the record. The vegetation then changed again to include a prominent herb component including Chenopodiaceae and Asteraceae. Sphagnum became prominent, and Nothofagus returned, but mainly as the subgenus Fuscospora (presently restricted to temperate climates). This is interpreted as a return to a generally wet, but now cold climate, in which outbreaks of cold polar air and frost were frequent. The transient drying out of a small maritime island and the accompanying vegetation/climate sequence could be explained by a higher frequency of the Sub-Tropical High Pressure (STHP) cells (the descending limbs of the Hadley cells) over New Zealand during the Miocene. This may have resulted from an increased frequency of ‘blocking’, a synoptic situation which occurs in the region today. An alternative hypothesis, that the global STHP belt lay at a significantly higher latitude in the early Neogene (perhaps 55°S) than today (about 30°S), is considered less likely because of physical constraints on STHP belt latitude. In either case, the difference between the early Neogene and present situation may have been a response to an increased polar-equatorial temperature gradient. This contrasts with current climate models for the geological past in which the latitude of the High Pressure belt impact is held invariant though geological time.  相似文献   

13.
In Melbourne, a southern hemisphere city with a cool temperate climate, the grass pollen season has been monitored using a Burkard spore trap for 12 years (11 pollen seasons, which extend from October through January). The onset of the grass pollen season (OGPS) has been defined in various ways using both arbitrary cumulative scores (Sum 75, Sum 100) and percentages (10% Pollen Fly). OGPS, based on the forecast model of pollen season devised by Lejoly-Gabriel (Acta Geogr. Lovan., 13 (1978) 1–260) has been most widely used in efforts to forecast the beginning of the pollen season. OGPS occurred in Melbourne between 20 October to 24 November (average 6 November), a difference of 35 days. Duration of the pollen season ranged from 46 to 81 days, with a mean of 55 days, one of the longest reported. The relationships between onset and various weather parameters for July have enabled us to modify a model, using linear regression analysis, to predict onset. The prediction model is based on a negative correlation between date of onset and the sum of rainfall for July (a winter month). The error of prediction (Ep) is 24% and predicted day of OGPS was precisely predicted on 2 occasions, and on others with a range of accuracy of 3 to 14 days.  相似文献   

14.
15.
Summary A list of the principal airborne and allergenic pollen species in the Netherlands was compiled on the basis of the pollen lists of Leiden and Helmond, the Leiden pollen calendar, the hour-square frequencies of the species in question in the Netherlands and the degree of allergenicity of the extent known. Twenty-two trees and shrubs, 9 herbs and 32 grasses were selected.  相似文献   

16.
In this paper airborne pollen concentration is compared to meteorological data of Trento and S. Michele all’Adige, two sites in the Adige Valley, in Trentino (North Italy). Pollen ofCorylus, Alnus, Betula andOstrya, four winter-spring flowering plants are considered. Pollen sampling was carried out in 1996 by volumetric Hirst-type samplers. For all pollen types considered, maximum pollen concentration coincided in both stations and there was a good overlap of the main pollen season length; the pollen curves of S. Michele a/A and Trento showed a highly positive correlation. The daily airborne pollen concentrations, defined as the number of pollen grains per cubic meter of air (P/m3), were compared to daily meteorological data: minimum and maximum air temperature (°C), average relative humidity (%), precipitation (mm), global incident radiation (cal/cm2), average wind direction (°) and wind speed (m/s). A highly positive correlation was found forCorylus and maximum temperature in both monitoring stations.Betula was positively, whereasOstrya was negatively correlated to relative humidity. With this first analytical approach sharp differences in the atmospheric pollen presence between the stations located at Trento and S. Michele all’Adige were not found.  相似文献   

17.
About 30% of the Hungarian population has some type of allergy, 65% of them have pollen sensitivity, and at least 60% of this pollen sensitivity is caused by ragweed. The short (or common) ragweed (Ambrosia artemisiifolia = Ambrosia elatior) has the most aggressive pollen of all. Clinical investigations prove that its allergenic pollen is the main reason for the most massive, most serious and most long-lasting pollinosis. The air in the Carpathian Basin is the most polluted with ragweed pollen in Europe. The aim of the study is to analyse how ragweed pollen concentration is influenced by meteorological elements in a medium-sized city, Szeged, Southern Hungary. The data basis consists of daily ragweed pollen counts and averages of 11 meteorological parameters for the 5-year daily data set, between 1997 and 2001. The study considers some of the ragweed pollen characteristics for Szeged. Application of the Makra test indicates the same period for the highest pollen concentration as that established by the main pollination period. After performing factor analysis for the daily ragweed pollen counts and the 11 meteorological variables examined, four factors were retained that explain 84.4% of the total variance of the original 12 variables. Assessment of the daily pollen number was performed by multiple regression analysis and results based on deseasonalised and original data were compared.  相似文献   

18.
19.
Continuous pollen monitoring of an urban network consisting of three stations has been undertaken for a period of 2 years in Perugia, central Italy. The aim has been to establish whether the Perugia pollen trap, active since 1983, is still representative of the area following recent urbanisation. Quantitative differences were found between the stations, reflecting different vegetational areas, but only slight differences were detected in relation to the timing of the principal period of pollination. Therefore, although individual pollen traps are necessary to characterize fully the different areas, one trap is sufficient to determine the key allergenic thresholds in the studied area.  相似文献   

20.
Continuous pollen monitoring of an urban network consisting of three stations has been undertaken for a period of 2 years in Perugia, central Italy. The aim has been to establish whether the Perugia pollen trap, active since 1983, is still representative of the area following recent urbanisation. Quantitative differences were found between the stations, reflecting different vegetational areas, but only slight differences were detected in relation to the timing of the principal period of pollination. Therefore, although individual pollen traps are necessary to characterize fully the different areas, one trap is sufficient to determine the key allergenic thresholds in the studied area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号