首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transepithelial Cl(-) transport in salivary gland ducts is a major component of the ion reabsorption process, the final stage of saliva production. It was previously demonstrated that a Cl(-) current with the biophysical properties of ClC-2 channels dominates the Cl(-) conductance of unstimulated granular duct cells in the mouse submandibular gland. This inward-rectifying Cl(-) current is activated by hyperpolarization and elevated intracellular Cl(-) concentration. Here we show that ClC-2 immunolocalized to the basolateral region of acinar and duct cells in mouse salivary glands, whereas its expression was most robust in granular and striated duct cells. Consistent with this observation, nearly 10-fold larger ClC-2-like currents were observed in granular duct cells than the acinar cells obtained from submandibular glands. The loss of inward-rectifying Cl(-) current in cells from Clcn2(-/-) mice confirmed the molecular identity of the channel responsible for these currents as ClC-2. Nevertheless, both in vivo and ex vivo fluid secretion assays failed to identify significant changes in the ion composition, osmolality, or salivary flow rate of Clcn2(-/-) mice. Additionally, neither a compensatory increase in Cftr Cl(-) channel protein expression nor in Cftr-like Cl(-) currents were detected in Clcn2 null mice, nor did it appear that ClC-2 was important for blood-organ barrier function. We conclude that ClC-2 is the inward-rectifying Cl(-) channel in duct cells, but its expression is not apparently required for the ion reabsorption or the barrier function of salivary ductal epithelium.  相似文献   

2.
Osteopontin is a multifunctional protein secreted by epithelial cells of various tissues. Its expression in the adult rat major salivary glands has not yet been studied. We examined osteopontin expression by immunohistochemistry using a well characterized monoclonal antibody. Submandibular glands of young adult male rats (70–100 days old) showed specific expression in secretion granules of granular duct cells but also in cells of the striated ducts and excretory duct. In the major sublingual as well as the parotid gland expression was found solely in the duct system. In addition, a few interstitial-like cells exhibiting very strong immunostaining for osteopontin could be found in either organ. Expression could neither be seen in acinar cells nor in cells of the intercalated ducts. Moreover, in submandibular glands of more aged rats (6- to 7-month old) which show well developed granular convoluted tubules, there was almost exclusive expression of osteopontin in granular duct cells as well as in some interstitial-like cells, but barely in the striated/excretory duct system. Western blot analysis of the submandibular gland showed a specific band migrating at approximately 74 kDa, detectable at both age stages. Osteopontin secreted fom granular duct cells may influence the compostion of the saliva, e.g. thereby modulating pathways affecting sialolithiasis. Its expression in striated duct cells may also hint to roles such as cell–cell attachment or cell differentiation. The cell-specific expression detected in the rat major salivary glands differs in part from that reported in mice, human and monkey.Nicholas Obermüller and Nikolaus Gassler contributed equally to this work.  相似文献   

3.
The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.  相似文献   

4.
The physiological success of fluid-secreting tissues relies on a regulated interplay between Ca(2+)-activated Cl(-) and K(+) channels. Parotid acinar cells express two types of Ca(2+)-activated K(+) channels: intermediate conductance IK1 channels and maxi-K channels. The IK1 channel is encoded by the K(Ca)3.1 gene, and the K(Ca)1.1 gene is a likely candidate for the maxi-K channel. To confirm the genetic identity of the maxi-K channel and to probe its specific roles, we studied parotid glands in mice with the K(Ca)1.1 gene ablated. Parotid acinar cells from these animals lacked maxi-K channels, confirming their genetic identity. The stimulated parotid gland fluid secretion rate was normal, but the sodium and potassium content of the secreted fluid was altered. In addition, we found that the regulatory volume decrease in acinar cells was substantially impaired in K(Ca)1.1-null animals. We examined fluid secretion from animals with both K(+) channel genes deleted. The secretion rate was severely reduced, and the ion content of the secreted fluid was significantly changed. We measured the membrane potentials of acinar cells from wild-type mice and from animals with either or both K(+) channel genes ablated. They revealed that the observed functional effects on fluid secretion reflected alterations in cell membrane voltage. Our findings show that the maxi-K channels are critical for the regulatory volume decrease in these cells and that they play an important role in the sodium uptake and potassium secretion process in the ducts of these fluid-secreting salivary glands.  相似文献   

5.
Patterns of salivary HCO secretion vary widely among species and among individual glands. In particular, virtually nothing is known about the molecular identity of the HCO transporters involved in human salivary secretion. We have therefore examined the distribution of several known members of the Na(+)-HCO cotransporter (NBC) family in the parotid and submandibular glands. By use of a combination of RT-PCR and immunoblotting analyses, the electroneutral cotransporters NBC3 and NBCn1 mRNA and protein expression were detected in both human and rat tissues. Immunohistochemistry demonstrated that NBC3 was present at the apical membranes of acinar and duct cells in both human and rat parotid and submandibular glands. NBCn1 was strongly expressed at the basolateral membrane of striated duct cells but not in the acinar cells in the human salivary glands, whereas little or no NBCn1 labeling was observed in the rat salivary glands. The presence of NBCn1 at the basolateral membrane of human striated duct cells suggests that it may contribute to ductal HCO secretion. In contrast, the expression of NBC3 at the apical membranes of acinar and duct cells in both human and rat salivary glands indicates a possible role of this isoform in HCO salvage under resting conditions.  相似文献   

6.
7.
The localization of kallikrein in human exocrine organs was studied with a direct immunofluorescence method. In the submandibular and parotid salivary glands, kallikrein was found apically in the striated duct cells whereas it was absent from the main excretory ducts or present only as a weak luminal rim. Kallikrein was not found in the acinar cells or in cells of the intercalated ducts. In the pancreas, kallikrein-specific fluorescence was seen in the granular portion of the acinar cells, whereas the islets of Langerhans and ductal cells were unstained.  相似文献   

8.
Summary The submandibular glands of female mice and the sublingual and parotid glands of adult male and female mice have been examined by light microscopical immunocytochemistry for nerve growth factor (NGF). In female submandibular glands, staining for NGF was observed in granular convoluted tubule and striated duct cells. Sublingual glands of the mouse contained relatively few granular cells staining for NGF compared with submandibular glands. However, such granular cells appeared to be more numerous in male sublingual glands than in female glands. The remainder of the intralobular duct cells in both male and female sublingual glands exhibited apical subluminal staining for NGF as well as light basal plasmalemmal staining. Parotid glands in both male and female mice exhibited a similar pattern of staining for NGF in striated duct cells. However, the glands did not contain granular cells nor did they exhibit any pattern of staining which reflected a sexual dimorphism. Immunodot staining of salivary gland extracts confirmed the presence of immunoreactivity for NGF in all three of the major salivary glands.  相似文献   

9.
Potassium (K+) homeostasis is controlled by the secretion of K+ ions across the apical membrane of renal collecting duct cells through a low-conductance inwardly rectifying K+ channel. The sensitivity of this channel to intracellular pH is particularly high and assumed to play a key role in K+ homeostasis. Recently, the apical K+ channel has been cloned (ROMK1,2,3 = Kir1.1a, Kir1.1b and Kir1.1c) and the pH dependence of ROMK1 was shown to resemble closely that of the native apical K+ channel. It is reported here that the steep pH dependence of ROMK channels is determined by a single amino acid residue located in the N-terminus close to the first hydrophobic segment M1. Changing lysine (K) at position 80 to methionine (M) removed the sensitivity of ROMK1 channels to intracellular pH. In pH-insensitive IRK1 channels, the reverse mutation (M84K) introduced dependence on intracellular pH similar to that of ROMK1 wild-type. A detailed mutation analysis suggests that a shift in the apparent pKalpha of K80 underlies the pH regulation of ROMK1 channels in the physiological pH range.  相似文献   

10.
Kallikrein has been localized in rodent kidney and salivary glands by means of an immunoglobulin-enzyme bridge technique. In sections of kidney, anti-kallikrein antibodies bound to the apical region of certain distal tubule segments in the cortex, to reabsorption droplets of proximal convoluted tubules, and to certain duct segments in the papilla. In salivary glands of both male and female rats and mice, and apical rim of most striated duct cells of submandibular, parotid and sublingual glands and granular tubules of submandibular glands exhibited immunoreactivity. Granular intercalated duct cells in female submandibular glands also displayed immunostaining for kallikrein. Phenylephrine administration resulted in loss of immunoreactive granules from the granular convoluted tubule cells of male mouse submandibular gland. This response was paralleled by a biochemically demonstrable decrease in kallikrein-like tosylarginine methyl ester (TAME) esterase activity.  相似文献   

11.
The enzyme Na+,K+-ATPase was localized immunohistochemically in major salivary glands of mouse, rat, and human and in exorbital lacrimal glands of the rodents. Immunoreactive Na+,K+-ATPase was abundant in the basolateral membranes of all epithelial cells lining striated and intra- and interlobular ducts of all glands. Reactivity of intercalated ducts varied among gland type and species. Cells lining granular ducts in rodent submandibular gland showed a heterogeneous staining pattern in rat but stained homogeneously in mouse. Secretory cells varied greatly in their content of immunoreactive Na+,K+-ATPase. As with all duct cells, staining was present only at the basolateral surface and was never observed at the luminal surface of reactive secretory cells. Mucous cells failed to show any reactivity in any gland examined. Serous cells showed a gradient of immunostaining intensity ranging from strongly positive in demilunes of human sublingual gland to negative in rat submandibular gland and lacrimal glands of rats and mice. The presence of basolaterally localized Na+,K+-ATPase in most serous cells but not in mucous cells suggests that the enzyme contributes to the ion and water content of copious, low-protein serous secretions. The intense immunostaining of cells in most if not all segments of the duct system supports the idea that the ducts are involved with modification of the primary saliva, and extends this concept to include all segments of the duct system.  相似文献   

12.
We employed immunocytochemical and in situ hybridization techniques to study the expression of transforming growth factor beta 1 (TGF-beta 1) in rat submandibular gland. Immunoreactivity for TGF-beta 1 was observed in the cells of granular convoluted tubules (GCTs), striated ducts, and excretory ducts, whereas it was absent in the intercalated ducts and secretory acini in both male and female rats. Immunoelectron microscopy revealed the ultrastructural localization of TGF-beta 1 in the secretory granules of GCT cells. On the other hand, signals for rat TGF-beta 1 mRNA were abundant in the GCT and striated duct cells but were lacking in the excretory duct cells. These results provided evidence for the production of TGF-beta 1 in the GCTs and striated ducts of rat submandibular gland.  相似文献   

13.
The ROMK (Kir1.1; Kcnj1) gene is believed to encode the apical small conductance K(+) channels (SK) of the thick ascending limb (TAL) and cortical collecting duct (CCD). Loss-of-function mutations in the human ROMK gene cause Bartter's syndrome with renal Na(+) wasting, consistent with the role of this channel in apical K(+) recycling in the TAL that is crucial for NaCl reabsorption. However, the mechanism of renal K(+) wasting and hypokalemia that develop in individuals with ROMK Bartter's syndrome is not apparent given the proposed loss of the collecting duct SK channel. Thus, we generated a colony of ROMK null mice with approximately 25% survival to adulthood that provides a good model for ROMK Bartter's syndrome. The remaining 75% of null mice die in less than 14 days after birth. The surviving ROMK null mice have normal gross renal morphology with no evidence of significant hydronephrosis, whereas non-surviving null mice exhibit marked hydronephrosis. ROMK protein expression was absent in TAL and CCD from null mice but exhibited normal abundance and localization in wild-type littermates. ROMK null mice were polyuric and natriuretic with an elevated hematocrit consistent with mild extracellular volume depletion. SK channel activity in TAL and CCD was assessed by patch clamp analysis in ROMK wild-type ROMK(+/+), heterozygous ROMK(+/-), and null ROMK(-/-) mice. In 313 patches with successful seals from the three ROMK genotypes, SK channel activity in ROMK (+/+ and +/-) exhibited normal single channel kinetics. The expression frequencies are as follows: 67 (TAL) and 58% (CCD) in ROMK(+/+); about half that of the wild-type in ROMK(+/-), being 38 (TAL) and 25% (CCD); absent in both TAL or CCD in ROMK(-/-) between 2 and 5 weeks in 15 mice (61 and 66 patches, respectively). The absence of SK channel activity in ROMK null mice demonstrates that ROMK is essential for functional expression of SK channels in both TAL and CCD. Despite loss of ROMK expression, the normokalemic null mice exhibited significantly increased kaliuresis, indicating alternative mechanisms for K(+) absorption/secretion in the nephron.  相似文献   

14.
In addition to their role in electrolyte homeostasis, striated ducts in the parotid and submandibular glands of many mammalian species engage in secretion of organic products. This secretion usually is in the form of serous-like granules that lack substructure. Usually, the granules are in the 2.0-2.5 mm range, but granules smaller than 0.1 mm and larger than 12 mm have been observed. In mustelids, striated duct cells contain rhomboidal crystalloids in their apical cytoplasm; in dogs and at least two bat species, the apical plasmalemma is festooned with perpendicularly-oriented rods. Rather than granules, the supranuclear cytoplasm of duct cells in a number of species contains spherical or oblong vesicles. These may convey glycoproteins to the luminal surface where they are incorporated into the glycocalyx or the plasma membrane. Certain vesicles appear to be involved in the uptake of foreign proteins introduced retrogradely into the main excretory duct or of altered proteins produced by acinar cells in streptozotocin-induced diabetes.  相似文献   

15.
This study addresses the mechanisms by which a defect in CFTR impairs pancreatic duct bicarbonate secretion in cystic fibrosis. We used control (PANC-1) and CFTR-deficient (CFPAC-1; DeltaF508 mutation) cell lines and measured HCO3- extrusion by the rate of recovery of intracellular pH after an alkaline load and recorded whole cell membrane currents using patch clamp techniques. 1) In PANC-1 cells, cAMP causes parallel activation of Cl- channels and of HCO3- extrusion by DIDS-sensitive and Na+-independent Cl-/HCO3- exchange, both effects being inhibited by Cl- channel blockers NPPB and glibenclamide. 2) In CFPAC-1 cells, cAMP fails to stimulate Cl-/HCO3- exchange and Cl- channels, except after promoting surface expression of DeltaF508-CFTR by glycerol treatment. Instead, raising intracellular Ca2+ concentration to 1 micromol/l or stimulating purinergic receptors with ATP (10 and 100 micromol/l) leads to parallel activation of Cl- channels and HCO3- extrusion. 3) K+ channel function is required for coupling cAMP- and Ca2+-dependent Cl- channel activation to effective stimulation of Cl-/HCO3- exchange in control and CF cells, respectively. It is concluded that stimulation of pancreatic duct bicarbonate secretion via Cl-/HCO3- exchange is directly correlated to activation of apical membrane Cl- channels. Reduced bicarbonate secretion in cystic fibrosis results from defective cAMP-activated Cl- channels. This defect is partially compensated for by an increased sensitivity of CF cells to purinergic stimulation and by alternative activation of Ca2+-dependent Cl- channels, mechanisms of interest with respect to possible treatment of cystic fibrosis and of related chronic pancreatic diseases.  相似文献   

16.
Summary Nerve growth factor (NGF) was localized in the submandibular, sublingual, and parotid salivary glands of male and female diabetic mice and their normal littermates by immunoperoxidase staining usingp-phenylenediamine-pyrocatechol as a chromogen for the cytochemical demonstration of peroxidase activity. In the normal male submandibular gland, immunoreactive NGF was localized in the apical regions of granular, intercalated and collecting duct cells, while in the normal female submandibular gland, NGF was present throughout the cytoplasm of granular duct cells. The localization of NGF in the diabetic male and female submandibular glands was similar and resembled that of the normal female. NGF immunoreactivity was also observed in the striated duct cells in the sublingual and parotid glands of all four types of mice.The sympathetic innervation of the submandibular glands of normal and diabetic mice was demonstrated using glyoxylic acid-induced histofluorescence. The pattern of sympathetic innervation and the intensity of catecholamine fluorescence was consistently different in the four types of mice. In the normal male submandibular gland the fluorescence was very intense, particularly in nerves adjacent to the granular ducts. In the normal female submandibular gland, the fluorescence was weak, while in the diabetic male and female the fluorescence was moderate.The correlation between the intensity of the immunocytochemical staining for NGF and the catecholamine fluorescence adjacent to the granular ducts suggests a trophic influence of the NGF-containing granular ducts on their sympathetic innervation.  相似文献   

17.
Summary Glycoprotein secretion in the mouse submandibular gland was investigated by light microscope radioautography of semi-thin sections after the administration of L-3H-fucose. The incorporation of the precursor in the acini was negligible. 3H-fucose was taken up in the paranuclear region of the cells lining the intercalated, secretory, striated and excretory ducts. This labeling pattern was interpreted as addition of the precursor to glycoproteins within the Golgi apparatus. Incorporation in the intercalated duct was restricted to the cells with fine cytoplasmic granules. The glycoproteins synthesized by the intercalated and secretory ducts were transported to the saliva by the secretion granules. It is assumed that the glycoproteins synthesized in the striated and excretory ducts are plasma membrane glycoproteins which seem to renew continuously. Quantitation of the radioautographs supplied data concerning the incorporation of 3H-fucose into newly synthesized glycoproteins as well as the renewal of the labeled macromolecules in each duct.  相似文献   

18.
To clarify the mechanism by which lactate affects insulin secretion, we investigated the effect of lactate on insulin secretion, cytosolic free Ca2+ ([Ca2+](i), the ATP sensitive K+ channel (K(ATP)) and the Ca2+-activated K+ channel (K(Ca)) in HIT-T15 cells, and the results were compared with those of glucose and glibenclamide. All three agents caused insulin secretion and increased [Ca2+](i), but the effects on the K+ channels were different. In cell-attached patch configurations, 10 mmol/l glucose blocked both the K(ATP) and KCa channels, while 100 nmol/l glibenclamide had no effect on KCa channels, but blocked K(ATP) channels. Lactate at a concentration of 10 mmol/l activated both the K(ATP) and KCa channels, not only in cell-attached, but also in inside-out patch configurations, indicating that the increase in [Ca2+](i) and secretion of insulin by lactate cannot be explained by the blocking of the K+ channels. Lactate, at concentrations of 10 mmol/l and 50 mmol/l decreased 45Ca2+ efflux, while glibenclamide increased the efflux. These results suggest that the lactate-induced Ca2+ increase is not due to the closing of K+ channels, but at least in part, to the suppression of Ca2+ efflux from HIT cells.  相似文献   

19.
The effects of the neuropeptides VIP, PHM and substance P (SP) on vascular smooth muscle tone, K+ secretion from exocrine elements and tissue content of cyclic AMP (cAMP) in the human submandibular gland were studied in vitro. All three peptides caused relaxation of noradrenaline contracted human submandibular arteries at nM concentrations. SP was slightly more active than VIP and PHM which had a similar potency as vasodilators. Only carbachol but not VIP, PHM or SP stimulated K+ secretion from exocrine elements of the human submandibular gland. Principally similar in vitro effects on K+ secretion were obtained on the cat submandibular gland, but in the rat not only carbachol but also SP stimulated K+ secretion. VIP and PHM increased cAMP production of exocrine elements in the human submandibular gland in nM concentrations. VIP was about 5-fold more potent than PHM with regards to cAMP production. In conclusion, VIP, PHM and SP relaxed human submandibular arteries in vitro. Both VIP and PHM stimulated cAMP production in glandular tissue but none of the three peptides induced K+ secretion from human submandibular gland tissue. This suggests that, in contrast to the situation in the rat, SP does not cause watery salivation in man, while VIP and PHM may modulate protein e.g. amylase content of the saliva.  相似文献   

20.
The HCO3 secretion mechanism in salivary glands is unclear but is thought to rely on the co-ordinated activity of multiple ion transport proteins including members of the Slc4 family of bicarbonate transporters. Slc4a7 was immunolocalized to the apical membrane of mouse submandibular duct cells. In contrast, Slc4a7 was not detected in acinar cells, and correspondingly, Slc4a7 disruption did not affect fluid secretion in response to cholinergic or β-adrenergic stimulation in the submandibular gland (SMG). Much of the Na +-dependent intracellular pH (pH i) regulation in SMG duct cells was insensitive to 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid, S0859, and to the removal of extracellular HCO 3 . Consistent with these latter observations, the Slc4a7 null mutation had no impact on HCO 3 secretion nor on pH i regulation in duct cells. Taken together, our results revealed that Slc4a7 targets to the apical membrane of mouse SMG duct cells where it contributes little if any to pH i regulation or stimulated HCO 3 secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号