首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although latitudinal gradients in diversity have been well studied, latitudinal variation in the taxonomic composition of communities has received less attention. Here, we use a large dataset including 950 surveys of helminth endoparasite communities in 650 species of vertebrate hosts to test for latitudinal changes in the relative contributions of trematodes, cestodes, nematodes and acanthocephalans to parasite assemblages. Although the species richness of helminth communities showed no consistent latitudinal variation, their taxonomic composition varied as a function of both host type and latitude. First, trematodes and acanthocephalans accounted for a higher proportion of species in helminth communities of fish, whereas nematodes achieved a higher proportion of the species in communities of bird and especially mammal hosts. Second, the proportion of trematodes in helminth communities of birds and mammals increased toward higher latitudes. Finally, the proportion of nematodes per community increased toward lower latitudes regardless of the type of host. We present tentative explanations for these patterns, and argue that new insights in parasite community ecology can be gained by searching for latitudinal gradients not only in parasite species richness, but also in the taxonomic composition of parasite assemblages.  相似文献   

2.
Summary We examine patterns of community richness among intestinal parasitic helminth communities in fishes, herptiles, birds and mammals with respect to the comparative number of component species in a host population. We show that terrestrial hosts have, on average, fewer component species than aquatic hosts. We also show that the mean number of component species in aquatic hosts increases from fishes through herptiles to birds before declining slightly in mammals. For terrestrial hosts, the mean number of component species increases from herptiles, through birds, reaching a maximum in mammals. We conclude that: (i) habitat of the host is more important in determining community richness than is host phylogeny; (ii) the phenomenon of host capture may be largely responsible for increased species richness in some host groups; (iii) aquatic birds harbour the richest intestinal helminth communities; and (iv) as we interpret them, our data refute the time hypothesis, which would predict that fishes as the oldest lifestyle should have the richest helminth communities.Order of authorship determined by random draw and does not imply seniority.  相似文献   

3.
A combined list of additions to previously published checklists of helminth and protozoan parasites of terrestrial mammals and birds in New Zealand is provided. These additions include a total of 21 new host parasite records (11 helminth, 10 protozoan) from 12 mammalian hosts and 82 new records (26 helminth, 56 protozoan) from 43 birds.  相似文献   

4.
5.
The numbers of intestinal helminth species (parasite richnesS) recorded from each of 488 vertebrate host species are compared using data compiled from the published literature. Associations between parasite richness, sampling effort, host size and host habitat (aquatic versus terrestrial) are assessed using a method designed to control for phylogenetic association. Parasite richness increases with the number of surveys on which each estimate of parasite richness is based (sampling effort). When the effects of sampling effort are controlled for, there remains a strong positive relationship between parasite richness and host body size. There is no tendency for aquatic hosts to harbour more parasite species than terrestrial hosts independently of differences in sampling effort and body size. The results are interpreted in the context of hosts representing habitats for parasite colonization, resource allocation between parasite species, and the age of the major mammalian radiations.  相似文献   

6.
Density, body mass and parasite species richness of terrestrial mammals   总被引:9,自引:0,他引:9  
We investigated the relationships between helminth species richness and body mass and density of terrestrial mammals. Cross-species analysis and the phylogenetically independent contrast method produced different results. A non-phylogenetic approach (cross-species comparisons) led to the conclusion that parasite richness is linked to host body size. However, an analysis using phylogenetically independent contrasts showed no relationship between host body size and parasite richness. Conversely, a non-phylogenetic approach generated a negative relationship between parasite richness and host density, whereas the independent contrast method showed the opposite trend – that is, parasite richness is positively correlated with host density. From an evolutionary perspective, our results suggest that opportunities for parasite colonization depend more closely on how many hosts are available in a given area than on how large the hosts are. From an epidemiological point of view, our results confirm theoretical models which assume that host density is linked to the opportunity of a parasite to invade a population of hosts. Our findings also suggest that parasitism may be a cost associated with host density. Finally, we provide some support for the non-linear allometry between density and mammal body mass (Silva and Downing, 1995), and explain why host density and host body mass do not relate equally to parasite species richness.  相似文献   

7.
R. Poulin 《Oecologia》1996,105(4):545-551
Within a host population, parasite infracommunities vary in both richness and species composition. If interspecific interactions among parasites are important in shaping infracommunities, the structure of these assemblages is expected to differ from the one predicted by null models, i.e. from the one that would result from chance alone. Using data from the literature, I tested for discrepancies between observed and random patterns in the richness and composition of gastrointestinal helminth infracommunities of birds and mammals. Both the Poisson distribution and a more sophisticated null model, derived from prevalence of the different parasite species in the host population, usually provided a good fit to the observed distributions of infracommunity richness among hosts. This suggests that parasite species do not co-occur more or less frequently than expected by chance. In mammals, the co-occurrence of all available parasite species in the same host individual, or maximum potential infracommunity richness, was less likely to be observed when several parasite species were available; this is also a phenomenon expected from the random assembly of parasite species. Finally, there was no evidence for a nested subset pattern among parasite species in a host population: rate species were distributed independently of common ones. The overall picture emerging from these results is one in which parasite assemblages are more likely to be the product of random events than of predictable and repeatable processes.  相似文献   

8.
Biodiversity is not distributed homogeneously in space, and it often covaries with productivity. The shape of the relationship between diversity and productivity, however, varies from a monotonic linear increase to a hump-shaped curve with maximum diversity values corresponding to intermediate productivity. The system studied and the spatial scale of study may affect this relationship. Parasite communities are useful models to test the productivity-diversity relationship because they consist of species belonging to a restricted set of higher taxa common to all host species. Using total parasite biovolume per host individual as a surrogate for community productivity, we tested the relationship between productivity and species richness among assemblages of metazoan parasites in 131 vertebrate host species. Across all host species, we found a linear relationship between total parasite biovolume and parasite species richness, with no trace of a hump-shaped curve. This result remained after corrections for the potential confounding effect of the number of host individuals examined per host species, host body mass, and phylogenetic relationships among host species. Although weaker, the linear relationship remained when the analyses were performed within the five vertebrate groups (fish, amphibians, reptiles, mammals and birds) instead of across all host species. These findings agree with the classic isolationist-interactive continuum of parasite communities that has become widely accepted in parasite ecology. They also suggest that parasite communities are not saturated with species, and that the addition of new species will result in increased total parasite biovolume per host. If the number of parasite species exploiting a host population is not regulated by processes arising from within the parasite community, external factors such as host characteristics may be the main determinants of parasite diversity.  相似文献   

9.
Parasitism is a common cause of host mortality, but little is known about the ecological factors affecting parasite virulence (the rate of mortality among infected hosts). We reviewed 117 field estimates of parasite-induced nestling mortality in birds, showing that there was significant consistency in mortality among host and parasite taxa. Virulence increased towards the tropics in analyses of both species-specific data and phylogenetic analyses. We found evidence of greater parasite prevalence being associated with reduced virulence. Furthermore, bird species breeding in open nest sites suffered from greater parasite-induced mortality than hole-nesting species. By contrast, parasite specialization and generation time of parasites relative to that of hosts explained little variation in virulence. Likewise, there were little or no significant effects of host genetic variability, host sociality, host migration, host insular distribution or host survival on parasite virulence. These findings suggest that parasite-induced nestling mortality in birds is mainly determined by geographical location and to a smaller extent nest site and prevalence.  相似文献   

10.
Whitney Preisser 《Ecography》2019,42(7):1315-1330
The latitudinal diversity gradient (LDG), or the trend of higher species richness at lower latitudes, has been well documented in multiple groups of free‐living organisms. Investigations of the LDG in parasitic organisms are comparatively scarce. Here, I investigated latitudinal patterns of parasite diversity by reviewing published studies and by conducting a novel investigation of the LDG of helminths (parasitic nematodes, trematodes and cestodes) of cricetid rodents (Rodentia: Cricetidae). Using host–parasite records from 175 parasite communities and 60 host species, I tested for the presence and direction of a latitudinal pattern of helminth richness. Additionally, I examined four abiotic factors (mean annual temperature, annual precipitation, annual temperature range and annual precipitation range) and two biotic variables (host body mass and host diet) as potential correlates of parasite richness. The analyses were performed with and without phylogenetic comparative methods, as necessary. In this system, helminths followed the traditional LDG, with increasing species richness with decreasing latitude. Nematode richness appeared to drive this pattern, as cestodes and trematodes exhibited a reverse LDG and no latitudinal pattern, respectively. Overall helminth richness and nematode richness were higher in areas with higher mean annual temperatures, annual precipitation and annual precipitation ranges and lower annual temperature ranges, characteristics that often typify lower latitudes. Cestode richness was higher in areas of lower mean annual temperatures, annual precipitation and annual precipitation ranges and higher annual temperature ranges, while trematode richness showed no relationship with climate variables when phylogenetic comparative methods were used. Host diet was significantly correlated with cestode and trematode species richness, while host body mass was significantly correlated with nematode species richness. Results of this study support a complex association between parasite richness and latitude, and indicate that researchers should carefully consider other factors when trying to understand diversity gradients in parasitic organisms.  相似文献   

11.
Identifying the mechanisms driving the distribution and diversity of parasitic organisms and characterizing the structure of parasite assemblages are critical to understanding host–parasite evolution, community dynamics, and disease transmission risk. Haemosporidian parasites of the genera Plasmodium and Haemoproteus are a diverse and cosmopolitan group of bird pathogens. Despite their global distribution, the ecological and historical factors shaping the diversity and distribution of these protozoan parasites across avian communities and geographic regions remain unclear. Here we used a region of the mitochondrial cytochrome b gene to characterize the diversity, biogeographical patterns, and phylogenetic relationships of Plasmodium and Haemoproteus infecting Amazonian birds. Specifically, we asked whether, and how, host community similarity and geography (latitude and area of endemism) structure parasite assemblages across 15 avian communities in the Amazon Basin. We identified 265 lineages of haemosporidians recovered from 2661 sampled birds from 330 species. Infection prevalence varied widely among host species, avian communities, areas of endemism, and latitude. Composition analysis demonstrated that both malarial parasites and host communities differed across areas of endemism and as a function of latitude. Thus, areas with similar avian community composition were similar in their parasite communities. Our analyses, within a regional biogeographic context, imply that host switching is the main event promoting diversification in malarial parasites. Although dispersal of haemosporidian parasites was constrained across six areas of endemism, these pathogens are not dispersal‐limited among communities within the same area of endemism. Our findings indicate that the distribution of malarial parasites in Amazonian birds is largely dependent on local ecological conditions and host evolutionary relationships.  相似文献   

12.
Evolutionarily distinctive host lineages might harbor fewer parasite species because they have fewer opportunities for parasite sharing than hosts having extant close relatives, or because diverse parasite assemblages promote host diversification. We evaluate these hypotheses using data from 930 species of parasites reported to infect free‐living carnivores. We applied nonparametric richness estimators to estimate parasite diversity among well‐sampled carnivore species and assessed how well host evolutionary distinctiveness, relative to other biological and environmental factors, explained variation in estimated parasite diversity. Species richness estimates indicate that the current published literature captures less than 50% of the true parasite diversity for most carnivores. Parasite species richness declined with evolutionary distinctiveness of carnivore hosts (i.e., length of terminal ranches of the phylogeny) and increased with host species body mass and geographic range area. We found no support for the hypothesis that hosts from more diverse lineages support a higher number of generalist parasites, but we did find evidence that parasite assemblages might have driven host lineage diversification through mechanisms linked to sexual selection. Collectively, this work provides strong support for host evolutionary history being an essential predictor of parasite diversity, and offers a simple model for predicting parasite diversity in understudied carnivore species.  相似文献   

13.
Bordes F  Morand S 《Parasitology》2008,135(14):1701-1705
Studies investigating parasite diversity have shown substantial geographical variation in parasite species richness. Most of these studies have, however, adopted a local scale approach, which may have masked more general patterns. Recent studies have shown that ectoparasite species richness in mammals seems highly repeatable among populations of the same mammal host species at a regional scale. In light of these new studies we have reinvestigated the case of parasitic helminths by using a large data set of parasites from mammal populations in 3 continents. We collected homogeneous data and demonstrated that helminth species richness is highly repeatable in mammals at a regional scale. Our results highlight the strong influence of host identity in parasite species richness and call for future research linking helminth species found in a given host to its ecology, immune defences and potential energetic trade-offs.  相似文献   

14.
The helminth parasites present in 412 lesser sandeels (Ammodytes tobianus) taken from June 1996 to May 1997 from the Aran Islands on the west coast of Ireland were examined. Ten helminth parasite species were recorded, and more than 92% of the sandeels were infected with at least 1 helminth species. Seven of the species were digeneans, including Brachyphallus crenatus, Hemiurus communis, Derogenes varicus, Lecithaster gibbosus, Opechona bacillaris, Cryptocotyle lingua, and Galactosomum lacteum; 2 nematodes, including Hysterothylacium sp. and Contracaecum sp.; and 1 cestode, Scolex pleuronectis. Three of the 7 digenean species were either larvae or immature. Only 2 species, the digeneans G. lacteum and H. communis, had prevalences greater than 50%. The dominant species was G. lacteum, accounting for 67% of all parasites present. The relationship between spawned groups, host length, and season versus the abundance, prevalence, species richness, and the total number of parasites in the infracommunities was investigated. No difference was found between the parasite communities of the 2 spawning races of the host population. Mean abundance and prevalence of the different parasite species showed seasonal variation. Numbers of parasite species and numbers of parasites increased with fish length. The role of A. tobianus as an intermediate host for helminths was assessed; it was determined that most were infectious to birds or mammals, with the majority of the parasite species being autogenic (infectious to fish). The mean number of parasites per fish was nearly a quarter of the value recorded for A. tobianus in the North Sea, where a much higher intensity of infection was recorded.  相似文献   

15.
Host specificity plays an essential role in shaping the evolutionary history of host-parasite associations. In this study, an index of host specificity recently proposed was used to test, quantitatively, the hypothesis that some groups of parasites are characteristics of some host fish families along their distribution range. A database with all published records on the helminth parasites of freshwater siluriforms of Mexico was used. The host specificity index was used considering its advantage to measure the taxonomic heterogeneity of the host assemblages and its appropriateness for unequal sampling data. The helminth parasite fauna of freshwater siluriforms in Mexico seems to be specific for different host taxonomic categories. However, a relatively high number of species (47% of the total helminth fauna) is specific to their respective host family. This result provides further corroboration for the biogeographic hypothesis of the core helminth fauna proposed previously. The statistical values for host specificity obtained herein seem to be independent of host range. However, the accurate taxonomic identification of the parasites is fundamental for the evaluation of host specificity and the accurate evolutionary interpretation of this phenomenon.  相似文献   

16.
Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.  相似文献   

17.
The paper describes an investigation of parasite richness in relation to host life history and ecology using data from an extensive survey of helminth parasites (cestodes, trematodes and nematodes) in Soviet birds. Correlates of parasite richness (number of parasite species per host species) were sought among 13 life-history variables, 13 ecological variables and one non-biological variable (number of host individuals examined) across a sample of 158 species of host. A statistical method to control for the effects of phylogenetic association was adopted throughout. Parasite richness correlates positively with the number of hosts examined (sample size) in all three parasite groups. Positive correlations (after controlling for the effects of sample size) were also found between host body weight and parasite richness for trematodes and nematodes, but not for cestodes.
A number of ecological variables were associated with parasite richness. However, when the effects of sample size and body weight were controlled for, only a single significant correlation (an association between trematode richness and aquatic habitat) remained. Similarly, a number of significant correlates of parasite richness were found among the life-history variables examined. Though several of these were robust to the confounding effects of sample size, all could be explained by the co-variation between life-history traits and body weight among the host species under investigation.  相似文献   

18.
Cryptic species cause problems for estimates of biodiversity. In the case of parasites, cryptic species also plague efforts to detect potential zoonotic diseases or invasive pathogens. It is crucial to determine whether the likelihood of finding cryptic species differs among higher parasite taxa, to better calibrate estimates of diversity and monitor diseases. Using published reports of cryptic species of helminth parasites identified using molecular tools, I show that the number of species found is strongly related to the number of parasite individuals sequenced, weakly influenced by the number of host species from which parasites were obtained, and unaffected by the genetic markers used. After correction for these factors, more cryptic species of trematodes are found than in other helminth taxa. Although several features distinguish trematodes from other helminths, it is probable that our inability to discriminate among sibling species of trematodes results from their lack of structures serving as species-specific morphological markers. The available data suggest that current estimates of helminth diversity may need to be doubled (tripled for trematodes) to better reflect extant diversity.  相似文献   

19.
《Biotropica》2017,49(2):229-238
Estimates of biodiversity and its global patterns are affected by parasite richness and specificity. Despite this, parasite communities are largely neglected in biodiversity estimates, especially in the tropics. We studied the parasites of annual killifish of the genus Nothobranchius that inhabit annually desiccating pools across the African savannah and survive the dry period as developmentally arrested embryos. Their discontinuous, non‐overlapping generations make them a unique organism in which to study natural parasite fauna. We investigated the relationship between global (climate and altitude) and local (pool size, vegetation, host density and diversity, and diversity of potential intermediate hosts) environmental factors and the community structure of killifish parasites. We examined metazoan parasites from 21 populations of four host species (Nothobranchius orthonotus, N. furzeri, N. kadleci, and N. pienaari) across a gradient of aridity in Mozambique. Seventeen parasite taxa were recorded, with trematode larval stages (metacercariae) being the most abundant taxa. The parasites recorded were both allogenic (life cycle includes non‐aquatic host; predominantly trematodes) and autogenic (cycling only in aquatic hosts; nematodes). The parasite abundance was highest in climatic regions with intermediate aridity, while parasite diversity was associated with local environmental characteristics and positively correlated with fish species diversity and the amount of aquatic vegetation. Our results suggest that parasite communities of sympatric Nothobranchius species are similar and dominated by the larval stages of generalist parasites. Therefore, Nothobranchius serve as important intermediate or paratenic hosts of parasites, with piscivorous birds and predatory fish being their most likely definitive hosts.  相似文献   

20.
Little is known about what controls effective sizes and migration rates among parasite populations. Such data are important given the medical, veterinary, and economic (e.g., fisheries) impacts of many parasites. The autogenic-allogenic hypothesis, which describes ecological patterns of parasite distribution, provided the foundation on which we studied the effects of life cycles on the distribution of genetic variation within and among parasite populations. The hypothesis states that parasites cycling only in freshwater hosts (autogenic life cycle) will be more limited in their dispersal ability among aquatic habitats than parasites cycling through freshwater and terrestrial hosts (allogenic life cycle). By extending this hypothesis to the level of intraspecific genetic variation, we examined the effects of host dispersal on parasite gene flow. Our a priori prediction was that for a given geographic range, autogenic parasites would have lower gene flow among subpopulations. We compared intraspecific mitochondrial DNA variation for three described species of trematodes that infect salmonid fishes. As predicted, autogenic species had much more highly structured populations and much lower gene flow among subpopulations than an allogenic species sampled from the same locations. In addition, a cryptic species was identified for one of the autogenic trematodes. These results show how variation in life cycles can shape parasite evolution by predisposing them to vastly different genetic structures. Thus, we propose that knowledge of parasite life cycles will help predict important evolutionary processes such as speciation, coevolution, and the spread of drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号