首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testosterone (T) is an absolute requirement for spermatogenesis and is supplied by mature Leydig cells stimulated by LH. We previously showed in gonadotropin-deficient hpg mice that T alone initiates qualitatively complete spermatogenesis bypassing LH-dependent Leydig cell maturation and steroidogenesis. However, because maximal T effects do not restore testis weight or germ cell number to wild-type control levels, additional Leydig cell factors may be involved. We therefore examined 1). whether chronic hCG administration to restore Leydig cell maturation and steroidogenesis can restore quantitatively normal spermatogenesis and testis development and 2). whether nonandrogenic Leydig cell products are required to initiate spermatogenesis. Weanling hpg mice were administered hCG (0.1-100 IU i.p. injection three times weekly) or T (1-cm subdermal Silastic implant) for 6 weeks, after which stereological estimates of germinal cell populations, serum and testicular T content, and testis weight were evaluated. Human CG stimulated Leydig cell maturation and normalized testicular T content compared with T treatment where Leydig cells remained immature and inactive. The maximal hCG-induced increases in testis weight and serum T concentrations were similar to those for T treatment and produced complete spermatogenesis characterized by mature, basally located Sertoli cells (SCs) with tripartite nucleoli, condensed haploid sperm, and lumen development. Compared with T treatment, hCG increased spermatogonial numbers, but both hCG and T had similar effects on numbers of spermatocytes and round and elongated spermatids per testis as well as per SC. Nevertheless, testis weight and germ cell numbers per testis and per SC remained well below phenotypically normal controls, confirming the involvement of non-Leydig cell factors such as FSH for quantitative normalization of spermatogenesis. We conclude that hCG stimulation of Leydig cell maturation and steroidogenesis is not required, and that T alone mostly replicates the effects of hCG, to initiate spermatogenesis. Because T is both necessary and sufficient for initiation of spermatogenesis, it is likely that T is the main Leydig cell secretory product involved and that additional LH-dependent Leydig cell factors are not essential for induction of murine spermatogenesis.  相似文献   

2.
There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis.  相似文献   

3.
Morphological, histochemical and biochemical studies of the testis of mice with testicular feminization (tfm/y) reveal a large accumulation of lipids in Leydig cells and in Sertoli cells. In Leydig cells of tfm/y mice, lipid droplets do not exhibit the special relationship with smooth endoplasmic reticulum that exists in normal adult Leydig cells. Compared to the surgically-cryptorchid control, the tfm/y testis contains more lipid in Leydig cells but less in Sertoli cells. There are also quantitative differences in testicular lipids in tmf/y and normal testes but no significant differences were noted between tfm/y and surgically-cryptorchid testes. The testes of both the genetically defective and surgically-cryptochid animals contain increased amounts of total lipids and phospholipids, and of free and esterified cholesterols. Exogenous testosterone has no effect on lipids or other characteristics of these cells. The present results suggest that the increased lipids in tfm/y mice result from a genetic disorder that asserts itself (1) in Leydig cells where it is associated with, and is probably a result of, impaired lipid metabolism and steroidogenesis, and (2) in Sertoli cells where it is perhaps attributable to arrested spermatogenesis and impaired steroidogenesis.  相似文献   

4.
An ultrastructural investigation revealed the presence of true Leydig cells in the testis of sexually mature specimens of Torpedo marmorata. They showed the typical organization of steroid-hormone-producing cells, which, however, changed as spermatocysts approached maturity. In fact, they appeared as active cells among spermatocysts engaged in spermatogenesis, while in regions where spermiation occurred, they progressively regressed resuming the fibroblastic organization typically present in the testis of immature specimens. Such observations strongly suggest that these cells might be engaged in steroidogenesis and actively control spermatogenesis. Sertoli cells, too, appeared to play a role in spermatogenesis control, since, like Leydig cells, they showed the typical aspect of steroidogenic cells. In addition, the presence of gap junctions between Sertoli cells suggests that their activity might be coordinated. After sperm release, most Sertoli cells were modified and, finally, degenerated, but few of them changed into round cells (cytoplasts) or round cell remnants, which continued their steroidogenic activity within the spermatocyst and the genital duct lumen. From the present observations, it can be reasonably concluded that, in T. marmorata, spermatogenesis depends on both Leydig and Sertoli cells, and, as postulated by Callard (1991), in cartilaginous fish, the function of the Leydig cells as producers of steroids might be more recent and subsequent to that of Sertoli cells. In this regard, it is noteworthy that, in immature males, when Leydig cells showed a fibroblastic organization, Sertoli cells already displayed the typical organization of a steroidogenic cell.  相似文献   

5.
U. Rai    S. Haider 《Journal of Zoology》1986,210(2):251-259
Effects of mammalian FSH, LH and testosterone on sexually regressed testes of Hemidactylus flaviviridis were investigated. Quantitative as well as histochemical studies revealed that only FSH could stimulate spermatogenesis and steroidogenesis. LH showed no effect either on the spermatogenesis or on steroidogenesis. Although testosterone did not induce any change at the initial stage, when given for a longer period the division of spermatogonia was completely checked.  相似文献   

6.
In the present study, we have tested the beneficial effects of forskolin in protecting the mancozeb‐induced reproductive toxicity in rats. Adult male Wistar rats were exposed to either mancozeb (500 mg/kg body weight/day) or forskolin (5 mg/kg body weight/day) or both for 65 days and analyzed for spermatogenesis and steroidogenesis and testicular and epididymal oxidative toxicity. A significant decrease in daily sperm production, epididymal sperm count, motile, viable, and hypo‐osmotic swelling‐tail swelled sperm was observed in mancozeb‐treated rats. The activity levels of testicular 3β‐hydroxysteroid dehydrogenase and 17β‐hydroxysteroid dehydrogenase and circulatory testosterone levels were significantly decreased in mancozeb‐treated rats. Exposure to mancozeb resulted in a significant decrease in glutathione levels and superoxide dismutase and catalase activity levels with an increase in lipid peroxidation levels in the testes and epididymis. Coadministration of forskolin mitigated the mancozeb‐induced oxidative toxicity and suppressed steroidogenesis and spermatogenesis.  相似文献   

7.
8.
The fat body appears to contribute cholesterol for testicular steroidogenesis. It also appears to provide prostaglandins and cyclic AMP for testicular steroidogenesis since fatectomy impairs this process which is corrected by the addition of prostaglandins and cyclic AMP. Of the two, prostaglandins have a more important role in spermatogenesis and cyclic AMP functions in steroidogenesis These functions of the fat body suggests that it constitutes a link in the hypothalamohypophysial-gonadal axis.  相似文献   

9.
10.
Pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in the steroidogenesis and spermatogenesis in the testis through its receptors PAC1, VPAC1 and VPAC2. In this study, we investigated the seasonal expressions of PACAP, PAC1, VPAC1, VPAC2, luteinizing hormone receptor (LHR), follicle stimulating hormone receptor (FSHR), steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) and CYP17A1 in the testis of male muskrat during the breeding season and non-breeding season, respectively. Histologically, we observed the presence of Leydig cells, Sertoli cells and various types of germ cells in the testis during the breeding season, yet only Leydig cells, Sertoli cells, spermatogonia and primary spermatocyte during the non-breeding season. In addition, the immunohistochemical localizations of PACAP and VPAC1 were identified in the Leydig cells, spermatogonia and spermatozoa during the breeding season, while only in the Leydig cells and spermatogonia during the non-breeding season, and PAC1 and VPAC2 were localized in the Leydig cells in both seasons, among which LHR, StAR, 3β-HSD and CYP17A1 were also expressed. Meanwhile, the protein and mRNA expression levels of PACAP, PAC1, VPAC1, VPAC2, LHR, FSHR, StAR, 3β-HSD and CYP17A1 in the testis during the breeding season were significantly higher than those during the non-breeding season. These results suggested that PACAP is involved in the regulation of steroidogenesis and spermatogenesis via an endocrine, autocrine or paracrine manner in the testis of muskrat.Key words: Pituitary adenylate cyclase-activating peptide (PACAP), PACAP receptors, steroidogenesis, testis, Ondatra zibethicus.  相似文献   

11.
We previously demonstrated that the expression of Mullerian inhibiting substance (MIS) in Sertoli cells is downregulated by tumor necrosis factor alpha (TNF-alpha), which is secreted by meiotic germ cells, in mouse testes. Several studies have reported that MIS that is secreted by Sertoli cells inhibits steroidogenesis and, thus, the synthesis of testosterone in testicular Leydig cells. Here, we demonstrate that in TNF-alpha knockout testes, which show high levels of MIS, steroidogenesis is decreased compared to that in wild-type testes. The levels of testosterone and the mRNA levels of steroidogenesis-related genes were significantly lower after puberty in TNF-alpha knockout testes than in wild-type testes. Furthermore, the number of sperm was reduced in TNF-alpha knockout mice. Histological analysis revealed that spermatogenesis is also delayed in TNF-alpha knockout testes. In conclusion, TNF-alpha knockout mice show reduced testicular steroidogenesis, which is likely due to the high level of testicular MIS compared to that seen in wild-type mice.  相似文献   

12.
The Sertoli cells of the Cape horseshoe bat (Rhinolophus capensis) and Schreiber's long-fingered bat (Miniopterus schreibersii) undergo marked changes in ultrastructure related to stages in the spermatogenic cycle. The amount of lipid stored in the Sertoli cells varies annually and is at a maximum from just after spermiation to early in the following spermatogenic cycle. During spermatogenesis, the diameter of the lipid droplets decreases, reaching a minimum prior to spermiation. Sertoli cells exhibit a marked apicobasal differentiation, particularly in the vicinity of developing late spermatids, where the cytoplasm of the Sertoli cell is packed with smooth endoplasmic reticulum. The possible roles of lipid droplets and smooth endoplasmic reticulum. The possible roles of lipid droplets and smooth endoplasmic reticulum in steroidogenesis by Sertoli cells are discussed. Junctional complexes occur between Sertoli cells and spermatogonia, are apparently absent from between Sertoli cells and spermatocytes, and are restricted to the region of the developing acrosome in the spermatids. Annulate lamellae, which occur commonly in the developing germinal cells and less frequently in the Sertoli cells, may be associated with the production of microtubules, which are present in both spermatids and Sertoli cells.  相似文献   

13.
The freshwater fish Serrasalmus spilopleura (piranha) has a continuous type of reproduction; gametes are constantly produced and released during the reproductive cycle. The testes do not undergo seasonal morphological changes but exhibit two constant regions throughout the year: the medullar region (involved with spermatogenesis) and the cortical region (involved with spermiation and sperm storage). We have evaluated the ultrastructure of the Leydig cells and the activity of 3beta-HSD (an essential enzyme related to steroid hormone biosynthesis) and acid phosphatase (AcPase; lysosomal marker enzyme) in these two regions. The activity of 3beta-HSD is stronger in the medullar region, and the Leydig cells in this region have a variety of cytological features that reflect differences in hormone synthesis and/or that could be linked to steroidogenic cells under various degrees of hormonal activity. In the cortical region, 3beta-HSD activity is weak and the Leydig cells exhibit signs of degeneration, as confirmed by their ultrastructure and intense AcPase activity. These degenerative signs are indicative of cytoplasmic remodelling to degrade steroidogenic enzymes, such as 3beta-HSD, that could lead to senescence or even to autophagic cell degeneration. S. spilopleura thus constitutes an interesting model for increasing our understanding of steroidogenesis control in freshwater teleost fish.  相似文献   

14.
Effects of pure human follicle-stimulating hormone (hFSH) and ovine luteinizing hormone (oLH) on testicular function were investigated in long-term hypophysectomized or photoinhibited Djungarian hamsters. hFSH (5 IU) or oLH (5 micrograms) or a combination of FSH and LH (5 IU and 5 micrograms, respectively) were injected s.c. twice daily for 7 days to hypophysectomized and photoinhibited hamsters. Other photoinhibited hamsters were treated for 14 and 21 days with FSH and LH (3 IU and 3 micrograms, respectively) in a similar way. LH alone had little, if any, effect on testicular weights; FSH, when injected alone or in combination with LH (FSH/LH), caused a significant increase in testes weights at each time point. On the other hand, LH or FSH/LH, but not FSH alone, caused a significant increase in the accessory organ weights. FSH had no effect on intratesticular testosterone (T) or on 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity but enhanced the in vitro response of interstitial cells to hCG. LH and FSH/LH had pronounced effects on intratesticular T, 3 beta-HSD activity, and in vitro response of interstitial cells to human chorionic gonadotropin. Treatment with FSH or FSH/LH caused regrowth of the testis and restoration of tubular lumen and tubular diameter and restored complete spermatogenesis. However, LH had little effect on spermatogenesis in spite of increased intratesticular and peripheral T levels. These results indicate that although LH can cause a full redifferentiation of Leydig cells in photoinhibited hamsters, it has only minor effects on tubular function. On the other hand, FSH alone induces full restoration of tubular function in these animals and has no direct effect on Leydig cell steroidogenesis, but may enhance the Leydig cell responsiveness to LH.  相似文献   

15.
Effects of photoperiod and temperature on testicular function in amphibians   总被引:1,自引:0,他引:1  
Most amphibians present an annual testicular cycle characterized by a quiescent period (late autumn-winter) and a spermatogenic period (spring and summer). At the end of the period of spermatogenesis undifferentiated interstitial cells transform into steroid-secreting Leydig cells which regress in spring at the beginning of the new spermatogenetic cycle. The testicular cycle is controlled by the pituitary gonadotropin levels which are high in autumn and winter, low in spring and increase temporarily in the middle of summer. Photoperiod and temperature seem to be the most important external factors involved in the regulation of this cycle in many amphibian species since the colder the geographic area, the longer the quiescent period and the shorter the spermatogenic period. This suggests the occurrence of a potentially continuous cycle in these species, in contrast with that which occurs in other species having an endogenous rhythm of testicular function which is much less sensitive to environmental factors. Although the specific response to temperature can vary widely between species, the most frequent observation in amphibians with a potentially continuous cycle is that exposure to mild temperatures (15-20 degrees C, according to the spring temperatures of the different geographic areas) stimulates spermatogenesis even during the period of testicular quiescence. If this mild temperature is combined with a long photoperiod, complete spermatogenesis is attained. Experiments performed during the period of germ-cell proliferation (development from spermatogonia to round spermatids) indicated that low temperatures (below 11 degrees C) as well as short photoperiods (less than 8 h of light) hinder germ-cell proliferation. Moderately high temperatures (about 30 degrees C) do not impair this proliferation. In the newt Triturus marmoratus, it has been shown that an excessively long photoperiod (over 16 h) has the same effect as a short photoperiod. In this species eyes are not required for the testicular photoperiodic response. Photoperiod appears to have no effect on spermiogenesis (differentiation of round spermatids into spermatozoa), because once round spermatids are formed, spermiogenesis will occur even in total darkness. Mild temperatures seem to be necessary for spermiogenesis as well as for androgen biosynthesis because neither process will take place at extreme temperatures. Results on the effect of photoperiod in steroidogenesis differ between species.  相似文献   

16.
The Kit receptor tyrosine kinase functions in hemato- poiesis, melanogenesis and gametogenesis. Kit receptor-mediated cellular responses include proliferation, survival, adhesion, secretion and differentiation. In mast cells, Kit-mediated recruitment and activation of phosphatidylinositol 3'-kinase (PI 3-kinase) produces phosphatidylinositol 3'-phosphates, plays a critical role in mediating cell adhesion and secretion and has contributory roles in mediating cell survival and proliferation. To investigate the consequences in vivo of blocking Kit-mediated PI 3-kinase activation we have mutated the binding site for the p85 subunit of PI 3-kinase in the Kit gene, using a knock-in strategy. Mutant mice have no pigment deficiency or impairment of steady-state hematopoiesis. However, gametogenesis is affected in several ways and tissue mast cell numbers are affected differentially. While primordial germ cells during embryonic development are not affected, Kit(Y719F)/Kit(Y719F) males are sterile due to a block at the premeiotic stages in spermatogenesis. Furthermore, adult males develop Leydig cell hyperplasia. The Leydig cell hyperplasia implies a role for Kit in Leydig cell differentiation and/or steroidogenesis. In mutant females follicle development is impaired at the cuboidal stages resulting in reduced fertility. Also, adult mutant females develop ovarian cysts and ovarian tubular hyperplasia. Therefore, a block in Kit receptor-mediated PI 3-kinase signaling may be compensated for in hematopoiesis, melanogenesis and primordial germ cell development, but is critical in spermatogenesis and oogenesis.  相似文献   

17.
Kisspeptin (Kp) expression in testis has caused most of the recent research surveying its functional role in this organ. This peptide influences spermatogenesis and sperm capacitation, so it is considered as a regulator of reproduction. Kp roles exert through hypothalamic/pituitary/gonadal axis. We aimed to evaluate direct roles for Kp on proliferation and differentiation of spermatogonial cells (SCs) when the cells are cocultured with somatic cells. Somatic cells and SCs were isolated from adult azoospermic and newborn mice and then enriched using a differential attachment technique. After the evaluation of identity and colonization for SCs, the cells were cocultured with somatic cells, and three doses of Kp (10−8-10−6 M) was assessed on proliferation (through evaluation of MVH and ID4 markers) and differentiation (via evaluation of c-Kit and SCP3, TP1, TP2, and, Prm1 markers) of the coculture system. Investigations were continued for four succeeding weeks. At the end of each level of testosterone in the culture media was also evaluated. We found positive influence from Kp on proliferative and differentiative markers in SCs cocultured with somatic cells. These effects were dose-dependent. There was no effect for Kp on testosterone level. From our findings, we simply conclude that Kp as a neuropeptide for influencing central part of reproductive axis could also positively affect peripheral processes related to spermatogenesis without having an effect on steroidogenesis.  相似文献   

18.
The pituitary gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) regulate steroidogenesis and spermatogenesis by activating receptors expressed by Leydig cells (LH receptor) and Sertoli cells (FSH receptor), respectively. This concept is also valid in fish, although the piscine receptors may be less discriminatory than their mammalian counterparts. The main biological activity of LH is to regulate Leydig-cell steroid production. Steroidogenesis is moreover modulated in an autoregulatory manner by androgens. The male sex steroids (testosterone in higher vertebrates, 11-ketotestosterone in fish) are required for spermatogenesis, but their mode of action has remained obscure. While piscine FSH also appears to have steroidogenic activity, specific roles have not been described yet in the testis. The feedback of androgens on gonadotrophs presents a complex pattern. Aromatizable androgens/estrogens stimulate LH synthesis in juvenile fish; this effect fades out during maturation. This positive feedback on LH synthesis is balanced by a negative feedback on LH release, which may involve GnRH neurones. While the role of GnRH as LH secretagogue is evident, we have found no indication in adult male African catfish for a direct, GnRH-mediated stimulation of LH synthesis. The limited available information at present precludes a generalized view on the testicular feedback on FSH.  相似文献   

19.
To evaluate the involvement of pituitary adenylate cyclase‐activating polypeptide (PACAP)/receptors system in the control of testis activity, we have investigated the expression and localization of PACAP and the distribution of its receptors in the testis of mature samples of quail Coturnix coturnix, and we have performed a phylogenetic analysis of PACAP in birds. Using histological, molecular, and bioinformatics tools, we demonstrated that (a) PACAP messenger RNA shows a high sequence identity with that reported in other birds studied so far and in other vertebrates. Furthermore, we showed that purifying selection acts on PACAP; (b) the PACAP peptide is present only in Leydig cells, whereas its receptors are localized within both Leydig and germ cells; (c) the synthesis of PACAP does not take place in seminiferous tubules. The role of PACAP in the control of spermatogenesis and steroidogenesis in birds is discussed. Finally, we talk about the phylogenetic and evolutionary relationships between PACAP in birds and in other vertebrates.  相似文献   

20.
Congenital lipoid adrenal hyperplasia (lipoid CAH) is the most severe form of CAH in which the synthesis of all gonadal and adrenal cortical steroids is markedly impaired. Lipoid CAH may be caused by the defect in either the steroidogenic acute regulatory (StAR) protein or the P450scc. More than 34 different mutations in StAR gene have been identified. Clinically, most of the patients manifest adrenal insufficiency from 1 day to 2 months of age, but some patient show delayed onset of adrenal insufficiency. Affected 46, XY subjects do not show pubertal development, whereas affected 46, XX subjects undergo spontaneous feminization, breast development and cyclical vaginal bleeding at the usual age of puberty.

X-linked adrenal hypoplasia congenital (AHC) is a rare congenital adrenal disorder characterized by severe adrenal insufficiency and hypogonadotropic hypogonadism. More than 80 different several intragenic mutations of DAX-1 have been identified. The failure of pubertal development may be caused by either abnormal hypothalamic or pituitary regulation of gonadotropin secretion. In addition, although the testicular steroidogenesis is largely intact, the functional maturity of Sertoli cells and also spermatogenesis are impaired. The type of mutation does not predict clinical phenotype. Thus, unified mechanism how DAX-1 gene defect gives rise to adrenal insufficiency, hypothalamic/pituitary hypogonadism and impaired spermatogenesis remains established.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号