首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trans‐Golgi network (TGN) is a major site for sorting of cargo to either the vacuole or apoplast. The TGN‐localized coiled‐coil protein TNO1 is a putative tethering factor that interacts with the TGN t‐SNARE SYP41 and is required for correct localization of the SYP61 t‐SNARE. An Arabidopsis thaliana tno1 mutant is hypersensitive to salt stress and partially mislocalizes vacuolar proteins to the apoplast, indicating a role in vacuolar trafficking. Here, we show that overexpression of SYP41 or SYP61 significantly increases SYP41–SYP61 complex formation in a tno1 mutant, and rescues the salt sensitivity and defective vacuolar trafficking of the tno1 mutant. The TGN is disrupted and vesicle budding from Golgi cisternae is reduced in the tno1 mutant, and these defects are also rescued by overexpression of SYP41 or SYP61. Our results suggest that the trafficking and Golgi morphology defects caused by loss of TNO1 can be rescued by increasing SYP41–SYP61 t‐SNARE complex formation, implicating TNO1 as a tethering factor mediating efficient vesicle fusion at the TGN.  相似文献   

2.
The trans-Golgi network (TGN) contains multiple sorting domains and acts as the compartment for cargo sorting. Recent evidence indicates that the TGN also functions as an early endosome, the first compartment in the endocytic pathway in plants. The SYP4 group, plant Qa-SNAREs localized on the TGN, regulates both secretory and vacuolar transport pathways. Consistent with a secretory role, SYP4 proteins are required for extracellular resistance to fungal pathogens. However, the physiological role of SYP4 in abiotic stress remains unknown. Here, we report the phenotypes of a syp4-mutant in regard to salinity and osmotic response, and describe the physiological roles of the SYP4 group in the abiotic stress response.  相似文献   

3.
TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis   总被引:1,自引:0,他引:1  
Kim SJ  Bassham DC 《Plant physiology》2011,156(2):514-526
The Arabidopsis (Arabidopsis thaliana) soluble N-ethylmaleimide-sensitive factor attachment protein receptor SYP41 is involved in vesicle fusion at the trans-Golgi network (TGN) and interacts with AtVPS45, SYP61, and VTI12. These proteins are involved in diverse cellular processes, including vacuole biogenesis and stress tolerance. A previously uncharacterized protein, named TNO1 (for TGN-localized SYP41-interacting protein), was identified by coimmunoprecipitation as a SYP41-interacting protein. TNO1 was found to localize to the TGN by immunofluorescence microscopy. A tno1 mutant showed increased sensitivity to high concentrations of NaCl, KCl, and LiCl and also to mannitol-induced osmotic stress. Localization of SYP61, which is involved in the salt stress response, was disrupted in the tno1 mutant. Vacuolar proteins were partially secreted to the apoplast in the tno1 mutant, suggesting that TNO1 is required for efficient protein trafficking to the vacuole. The tno1 mutant had delayed formation of the brefeldin A (BFA) compartment in cotyledons upon application of BFA, suggesting less efficient membrane fusion processes in the mutant. Unlike most TGN proteins, TNO1 does not relocate to the BFA compartment upon BFA treatment. These data demonstrate that TNO1 is involved in vacuolar trafficking and salt tolerance, potentially via roles in vesicle fusion and in maintaining TGN structure or identity.  相似文献   

4.
The syntaxin family of soluble N-ethyl maleimide sensitive factor adaptor protein receptors (SNAREs) is known to play an important role in the fusion of transport vesicles with specific organelles. Twenty-four syntaxins are encoded in the genome of the model plant Arabidopsis thaliana. These 24 genes are found in 10 gene families and have been reclassified as syntaxins of plants (SYPs). Some of these gene families have been previously characterized, with the SYP2-type syntaxins being found in the prevacuolar compartment (PVC) and the SYP4-type syntaxins on the trans-Golgi network (TGN). Here we report on two previously uncharacterized syntaxin groups. The SYP5 group is encoded by a two-member gene family, whereas SYP61 is a single gene. Both types of syntaxins are localized to multiple compartments of the endomembrane system, including the TGN and the PVC. These two groups of syntaxins form SNARE complexes with each other, and with other Arabidopsis SNAREs. On the TGN, SYP61 forms complexes with the SNARE VTI12 and either SYP41 or SYP42. SYP51 and SYP61 interact with each other and with VTI12, most likely also on the TGN. On the PVC, a SYP5-type syntaxin interacts specifically with a SYP2-type syntaxin, as well as the SNARE VTI11, forming a SNARE complex likely involved in TGN-to-PVC trafficking.  相似文献   

5.
AtVPS45 complex formation at the trans-Golgi network   总被引:18,自引:0,他引:18       下载免费PDF全文
The Sec1p family of proteins are thought to be involved in the regulation of vesicle fusion reactions through interaction with t-SNAREs (target soluble N-ethylmaleimide-sensitive factor attachment protein receptors) at the target membrane. AtVPS45 is a member of this family from Arabidopsis thaliana that we now demonstrate to be present on the trans-Golgi network (TGN), where it colocalizes with the vacuolar cargo receptor AtELP. Unlike yeast Vps45p, AtVPS45 does not interact with, or colocalize with, the prevacuolar t-SNARE AtPEP12. Instead, AtVPS45 interacts with two t-SNAREs, AtTLG2a and AtTLG2b, that show similarity to the yeast t-SNARE Tlg2p. AtTLG2a and -b each colocalize with AtVPS45 at the TGN; however, AtTLG2a is in a different region of the TGN than AtTLG2b by immunogold electron microscopy. Therefore, we propose that complexes containing AtVPS45 and either AtTLG2a or -b define functional subdomains of the TGN and may be required for different trafficking events. Among other Arabidopsis SNAREs, AtVPS45 antibodies preferentially coprecipitate AtVTI1b over the closely related isoform AtVTI1a, implying that AtVTI1a and AtVTI1b also have distinct functions within the cell. These data point to a functional complexity within the plant secretory pathway, where proteins encoded by gene families have specialized functions, rather than functional redundancy.  相似文献   

6.
SYP2 proteins are a sub-family of Qa-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) that may be responsible for protein trafficking between pre-vacuolar compartments (PVC) and vacuoles. Arabidopsis thaliana SYP22/VAM3/SGR3 and SYP21/PEP12 proteins function independently, but are both reported to be essential for male gametophytic viability. Here, we systematically examined the redundancy of three SYP2 paralogs (i.e. SYP21, 22 and 23) using a Col-0 ecotype harboring a SYP2 paralog (SYP23/PLP) that lacked a transmembrane domain. Surprisingly, no visible phenotypes were observed, even in the double knockout syp21/pep12 syp23/plp. Deficiency of either SYP21/PEP12 or SYP23/PLP in the syp22 background resulted in a defect in vacuolar protein sorting, characterized by abnormal accumulation of protein precursors in seeds. SYP21/PEP12 knockdown enhanced the syp22 phenotype (i.e. semi-dwarfism, poor leaf vein development and abnormal development of myrosin cells), and additional knockout of SYP23/PLP further aggravated the phenotype. A GFP-SYP23/PLP fusion localized to the cytosol, but not to the PVC or vacuolar membrane, where SYP21/PEP12 or SYP22/VAM3, respectively, were localized. Immunoprecipitation analysis showed that SYP23/PLP interacted with the vacuolar Qb- and Qc-SNAREs, VTI11 and SYP5, respectively, suggesting that SYP23/PLP is able to form a SNARE complex anchoring the membrane. Unexpectedly, we found that expression of multiple copies of a genomic fragment of SYP23/PLP suppressed the abnormal syp22-3 phenotype. Thus, SYP2 proteins, including cytosolic SYP23/PLP, appear to function redundantly in vacuolar trafficking and plant development.  相似文献   

7.
SNARE complex formation is essential for membrane fusion in exocytotic and vacuolar trafficking pathways. Vesicle-associated (v-) SNARE associates with a target membrane (t-) SNARE to form a SNARE complex bridging two membranes, which may facilitate membrane fusion. The Arabidopsis genome encodes a large number of predicted SNARE proteins that might function primarily as fusogens for vesicle transport in endomembrane systems. The SNAREs SYP41, SYP61 and VTI12 reside in the trans-Golgi network and have been proposed to function together in vesicle fusion with this organelle. Here, we use a liposome fusion assay to demonstrate that VTI12 and either SYP41 or SYP61, but not both, are required for membrane fusion. This indicates that SYP41 and SYP61 are likely to function in independent vesicle fusion reactions in Arabidopsis. In addition, we have identified two new functionally interchangeable components, YKT61 and YKT62, that show sequence similarity to the multifunctional yeast SNARE YKT6. Both YKT61 and YKT62 interact with SYP41 and are essential for membrane fusion mediated by either SYP41 or SYP61. These results therefore define the core constituents required for membrane fusion at the Arabidopsis trans-Golgi network.  相似文献   

8.
The Sec1p family of proteins is required for vesicle-mediated protein trafficking between various organelles of the endomembrane system. This family includes Vps45p, which is required for transport to the vacuole in yeast (Saccharomyces cerevisiae). We have isolated a cDNA encoding a VPS45 homolog from Arabidopsis thaliana (AtVPS45). The cDNA is able to complement both the temperature-sensitive growth defect and the vacuolar-targeting defect of a yeast vps45 mutant, indicating that the two proteins are functionally related. AtVPS45p is a peripheral membrane protein that associates with microsomal membranes. Sucrose-density gradient fractionation demonstrated that AtVPS45p co-fractionates with AtELP, a potential vacuolar protein sorting receptor, implying that they may reside on the same membrane populations. These results indicate that AtVPS45p is likely to function in the transport of proteins to the vacuole in plants.  相似文献   

9.
The SNARE complex composed of VAMP727, SYP22, VTI11 and SYP51 is critical for protein trafficking and PSV biogenesis in Arabidopsis. This SNARE complex directs the fusion between the prevacuolar compartment (PVC) and the vacuole, and thus mediates protein trafficking to the vacuole. In this study, we examined the role of AtNHX5 and AtNHX6 in regulating this SNARE complex and its function in protein trafficking. We found that AtNHX5 and AtNHX6 were required for seed production, protein trafficking and PSV biogenesis. We further found that the nhx5 nhx6 syp22 triple mutant showed severe defects in seedling growth and seed development. The triple mutant had short siliques and reduced seed sets, but larger seeds. In addition, the triple mutant had numerous smaller protein storage vacuoles (PSVs) and accumulated precursors of the seed storage proteins in seeds. The PVC localization of SYP22 and VAMP727 was repressed in nhx5 nhx6, while a significant amount of SYP22 and VAMP727 was trapped in the Golgi or TGN in nhx5 nhx6. AtNHX5 and AtNHX6 were co-localized with SYP22 and VAMP727. Three conserved acidic residues, D164, E188, and D193 in AtNHX5 and D165, E189, and D194 in AtNHX6, were essential for the transport of the storage proteins, indicating the importance of exchange activity in protein transport. AtNHX5 or AtNHX6 did not interact physically with the SNARE complex. Taken together, AtNHX5 and AtNHX6 are required for the PVC localization of the SNARE complex and hence its function in protein transport. AtNHX5 and AtNHX6 may regulate the subcellular localization of the SNARE complex by their transport activity.  相似文献   

10.
Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function.  相似文献   

11.
The Arabidopsis thaliana Qa-SNARE SYP121 (=SYR1/PEN1) drives vesicle traffic at the plasma membrane of cells throughout the vegetative plant. It facilitates responses to drought, to the water stress hormone abscisic acid, and to pathogen attack, and it is essential for recovery from so-called programmed stomatal closure. How SYP121-mediated traffic is regulated is largely unknown, although it is thought to depend on formation of a fusion-competent SNARE core complex with the cognate partners VAMP721 and SNAP33. Like SYP121, the Arabidopsis Sec1/Munc18 protein SEC11 (=KEULE) is expressed throughout the vegetative plant. We find that SEC11 binds directly with SYP121 both in vitro and in vivo to affect secretory traffic. Binding occurs through two distinct modes, one requiring only SEC11 and SYP121 and the second dependent on assembly of a complex with VAMP721 and SNAP33. SEC11 competes dynamically for SYP121 binding with SNAP33 and VAMP721, and this competition is predicated by SEC11 association with the N terminus of SYP121. These and additional data are consistent with a model in which SYP121-mediated vesicle fusion is regulated by an unusual “handshaking” mechanism of concerted SEC11 debinding and rebinding. They also implicate one or more factors that alter or disrupt SEC11 association with the SYP121 N terminus as an early step initiating SNARE complex formation.  相似文献   

12.
Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane.  相似文献   

13.
Pollen development is a key process for the sexual reproduction of angiosperms. The Golgi plays a critical role in pollen development via the synthesis and transport of cell wall materials. However, little is known about the molecular mechanisms underlying the maintenance of Golgi integrity in plants. In Arabidopsis thaliana, syntaxin of plants (SYP) 3 family proteins SYP31 and SYP32 are the only two Golgi-localized Qa-soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) with unknown endogenous functions. Here, we demonstrate the roles of SYP31 and SYP32 in modulating Golgi morphology and pollen development. Two independent lines of syp31/+ syp32/+ double mutants were male gametophytic lethal; the zero transmission rate of syp31 syp32 mutations was restored to largely normal levels by pSYP32:SYP32 but not pSYP32:SYP31 transgenes, indicating their functional differences in pollen development. The initial arrest of syp31 syp32 pollen occurred during the transition from the microspore to the bicellular stage, where cell plate formation in pollen mitosis I (PMI) and deposition of intine were abnormal. In syp31 syp32 pollen, the number and length of Golgi cisterna were significantly reduced, accompanied by many surrounding vesicles, which could be largely attributed to defects in anterograde and retrograde trafficking routes. SYP31 and SYP32 directly interacted with COG3, a subunit of the conserved oligomeric Golgi (COG) complex and were responsible for its Golgi localization, providing an underlying mechanism for SYP31/32 function in intra-Golgi trafficking. We propose that SYP31 and SYP32 play partially redundant roles in pollen development by modulating protein trafficking and Golgi structure.  相似文献   

14.
The small GTPase Rab5 has emerged as an important regulator of animal development, and it is essential for endocytic trafficking. However, the mechanisms that link Rab5 activation to cargo entry into early endosomes remain unclear. We show here that Drosophila Rabenosyn (Rbsn) is a Rab5 effector that bridges an interaction between Rab5 and the Sec1/Munc18-family protein Vps45, and we further identify the syntaxin Avalanche (Avl) as a target for Vps45 activity. Rbsn and Vps45, like Avl and Rab5, are specifically localized to early endosomes and are required for endocytosis. Ultrastructural analysis of rbsn, Vps45, avl, and Rab5 null mutant cells, which show identical defects, demonstrates that all four proteins are required for vesicle fusion to form early endosomes. These defects lead to loss of epithelial polarity in mutant tissues, which overproliferate to form neoplastic tumors. This work represents the first characterization of a Rab5 effector as a tumor suppressor, and it provides in vivo evidence for a Rbsn–Vps45 complex on early endosomes that links Rab5 to the SNARE fusion machinery.  相似文献   

15.
Post-Golgi vesicle trafficking is indispensable for precise movement of proteins to the pellicle, the sub-pellicle network and apical secretory organelles in Apicomplexa. However, only a small number of molecular complexes involved in trafficking, tethering and fusion of vesicles have been identified in Toxoplasma gondii. Consequently, it is unclear how complicated vesicle trafficking is accomplished in this parasite. Sec1/Munc18-like (SM) proteins are essential components of protein complexes involved in vesicle fusion. Here, we found that depletion of the SM protein TgSec1 using an auxin-inducible degron-based conditional knockout strategy led to mislocalization of plasma membrane proteins. By contrast, conditional depletion of the SM protein TgVps45 led to morphological changes, asymmetrical loss of the inner membrane complex and defects in nucleation of sub-pellicular microtubules, polarization and symmetrical assembly of daughter parasites during repeated endodyogeny. TgVps45 interacts with the SNARE protein TgStx16 and TgVAMP4-1. Conditional ablation of TgStx16 causes the similar growth defect like TgVps45 deficiency suggested they work together for the vesicle fusion at TGN. These findings indicate that these two SM proteins are crucial for assembly of pellicle and sub-pellicle network in T. gondii respectively.  相似文献   

16.
Transport between the trans-Golgi network (TGN) and late endosome represents a conserved, clathrin-dependent sorting event that separates lysosomal from secretory cargo molecules and is also required for localization of integral membrane proteins to the TGN. Previously, we reported a cell-free reaction that reconstitutes transport from the yeast TGN to the late endosome/prevacuolar compartment (PVC) and requires the PVC t-SNARE Pep12p. Here, we report that factors required both for formation of clathrin-coated vesicles at the TGN (the Chc1p clathrin heavy chain and the Vps1p dynamin homolog) and for vesicle fusion at the PVC (the Vps21p rab protein and Vps45p SM (Sec1/Munc18) protein) are required for cell-free transport. The marker for TGN-PVC transport, Kex2p, is initially present in a clathrin-containing membrane compartment that is competent for delivery of Kex2p to the PVC. A Kex2p chimera containing the cytosolic tail (C-tail) of the vacuolar protein sorting receptor, Vps10p, is also efficiently transported to the PVC. Antibodies against the Kex2p and Vps10p C-tails selectively block transport of Kex2p and the Kex2-Vps10p chimera. The requirements for factors involved in vesicle formation and fusion, the identification of the donor compartment as a clathrin-containing membrane, and the need for accessibility of C-tail sequences argue that the TGN-PVC transport reaction involves selective incorporation of TGN cargo molecules into clathrin-coated vesicle intermediates. Further biochemical dissection of this reaction should help elucidate the molecular requirements and hierarchy of events in TGN-to-PVC sorting and transport.  相似文献   

17.
Golgi-mediated transport to the lytic vacuole involves passage through the prevacuolar compartment (PVC), but little is known about how vacuolar proteins exit the PVC. We show that this last step is inhibited by overexpression of Arabidopsis thaliana syntaxin PEP12/SYP21, causing an accumulation of soluble and membrane cargo and the plant vacuolar sorting receptor BP80 in the PVC. Anterograde transport proceeds normally from the endoplasmic reticulum to the Golgi and the PVC, although export from the PVC appears to be compromised, affecting both anterograde membrane flow to the vacuole and the recycling route of BP80 to the Golgi. However, Golgi-mediated transport of soluble and membrane cargo toward the plasma membrane is not affected, but a soluble BP80 ligand is partially mis-sorted to the culture medium. We also observe clustering of individual PVC bodies that move together and possibly fuse with each other, forming enlarged compartments. We conclude that PEP12/SYP21 overexpression specifically inhibits export from the PVC without affecting the Golgi complex or compromising the secretory branch of the endomembrane system. The results provide a functional in vivo assay that confirms PEP12/SYP21 involvement in vacuolar sorting and indicates that excess of this syntaxin in the PVC can be detrimental for further transport from this organelle.  相似文献   

18.
The SNARE complex is a key regulator of vesicular traffic, executing membrane fusion between transport vesicles or organelles and target membranes. A functional SNARE complex consists of four coiled-coil helical bundles, three of which are supplied by Q-SNAREs and another from an R-SNARE. Arabidopsis thaliana VAMP727 is an R-SNARE, with homologs only in seed plants. We have found that VAMP727 colocalizes with SYP22/ VAM3, a Q-SNARE, on a subpopulation of prevacuolar compartments/endosomes closely associated with the vacuolar membrane. Genetic and biochemical analyses, including examination of a synergistic interaction of vamp727 and syp22 mutations, histological examination of protein localization, and coimmunoprecipitation from Arabidopsis lysates indicate that VAMP727 forms a complex with SYP22, VTI11, and SYP51 and that this complex plays a crucial role in vacuolar transport, seed maturation, and vacuole biogenesis. We suggest that the VAMP727 complex mediates the membrane fusion between the prevacuolar compartment and the vacuole and that this process has evolved as an essential step for seed development.  相似文献   

19.
Intracellular membrane fusion requires Rab GTPases, tethers, SNAREs of the R, Qa, Qb, and Qc families, and SNARE chaperones of the Sec17 (SNAP), Sec18 (NSF), and SM (Sec1/Munc18) families. The vacuolar HOPS complex combines the functions of membrane tethering and SM catalysis of SNARE assembly. HOPS is activated for this catalysis by binding to the vacuolar lipids and Rab. Of the eight major vacuolar lipids, we now report that phosphatidylinositol and phosphatidylinositol-3-phosphate are required to activate HOPS for SNARE complex assembly. These lipids plus ergosterol also allow full trans-SNARE complex assembly, yet do not support fusion, which is reliant on either phosphatidylethanolamine (PE) or on phosphatidic acid (PA), phosphatidylserine (PS), and diacylglycerol (DAG). Fusion with a synthetic tether and without HOPS, or even without SNAREs, still relies on either PE or on PS, PA, and DAG. These lipids are thus required for the terminal bilayer rearrangement step of fusion, distinct from the lipid requirements for the earlier step of activating HOPS for trans-SNARE assembly.  相似文献   

20.
The vesicle trafficking SYNTAXIN OF PLANTS132 (SYP132) drives hormone-regulated endocytic traffic to suppress the density and function of plasma membrane (PM) H+-ATPases. In response to bacterial pathogens, it also promotes secretory traffic of antimicrobial pathogenesis-related (PR) proteins. These seemingly opposite actions of SYP132 raise questions about the mechanistic connections between the two, likely independent, membrane trafficking pathways intersecting plant growth and immunity. To study SYP132 and associated trafficking of PM H+-ATPase 1 (AHA1) and PATHOGENESIS-RELATED PROTEIN1 (PR1) during pathogenesis, we used the virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) bacteria for infection of Arabidopsis (Arabidopsis thaliana) plants. SYP132 overexpression suppressed bacterial infection in plants through the stomatal route. However, bacterial infection was enhanced when bacteria were infiltrated into leaf tissue to bypass stomatal defenses. Tracking time-dependent changes in native AHA1 and SYP132 abundance, cellular distribution, and function, we discovered that bacterial pathogen infection triggers AHA1 and SYP132 internalization from the plasma membrane. AHA1 bound to SYP132 through its regulatory SNARE Habc domain, and these interactions affected PM H+-ATPase traffic. Remarkably, using the Arabidopsis aha1 mutant, we discovered that AHA1 is essential for moderating SYP132 abundance and associated secretion of PR1 at the plasma membrane for pathogen defense. Thus, we show that during pathogenesis SYP132 coordinates AHA1 with opposing effects on the traffic of AHA1 and PR1.

Coordination between SNARE SYP132 and plasma membrane H+-ATPase AHA1 moderates SNARE abundance during pathogenesis with opposing effects on trafficking of AHA1 and antimicrobial pathogenesis-related protein 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号