首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
EB virus (EBV) preparations derived from various producing lymphoblastoid cell lines (LCL) differed in their biological properties, as judged by the following four tests: (1) cord blood lymphocyte (CBL) transformation into EBV-carrying LCL; (2) early antigen (EA) induction in Raji cells; (3) inhibition of Raji cell growth; (4) induction of the EBV-determined nuclear antigen (EBNA) in CBL. B95-8 virus transformed and induced EBNA in CBL but did not induce EA in Raji cells, nor did it inhibit their growth. P3HR-1 virus did not transform CBL, induced no EBNA or EA in CBL, but induced EA in Raji cells and inhibited their growth. EBV isolated from the QIMR-WIL, 833L, F137 and cb-8-7 LCL resembled the B95-8 virus with regard to its biological activity (CBL transformation, EA induction in and growth inhibition of Raji cells). Transformation of CBL as contrasted to EA induction in, and growth inhibition of Raji cells thus appear as mutually exclusive viral functions.  相似文献   

2.
The heterogeneity of Epstein-Barr virus (EBV) obtained from P3HR-1 cells has permitted derivation of a distinct subclone of P3HR-1 (L. Heston, M. Rabson, N. Brown, and G. Miller, Nature (London) 295:160-163, 1982). We have analyzed the biologic properties and genomic structure of this subclonal virus (clone 13) compared with those of parental P3HR-1 and B95-8 viruses. Synthesis of EBV compared with those of parental P3HR-1 and B95-8 viruses. Synthesis of EBV proteins in Raji cells superinfected with virus derived from P3HR-1, clone 13, and B95-8 was analyzed both by fluorography of radiolabeled proteins and by immunoblotting. Highly concentrated preparations of clone 13 and B95-8 virus induced most of the spectrum of EBV proteins in Raji cells with the exception of the 145,000-, 140,000-, and 110,000-molecular-weight proteins, which were either undetectable or reduced. Moreover, both clone 13 and B95-8 viruses also induced the same patterns of early antigen diffuse components as the parental P3HR-1 virus did. However, only P3HR-1 virus could induce EBV DNA synthesis in superinfected Raji cells, as determined both by buoyant density centrifugation and by in situ cytohybridization with biotinylated recombinant EBV DNA probes. Defective heterogeneous molecules present in P3HR-1 virus have been implicated in early antigen induction after superinfection of Raji cells. Therefore, Southern blots of clone 13, P3HR-1, and B95-8 viruses were hybridized to recombinant EBV fragments representing the sequences contained within the defective molecules in P3HR-1. The parental P3HR-1 contained the previously described defective molecules. No evidence for defective molecules was found in clone 13 or B95-8 viruses. These data indicate that concentrated preparations of both clone 13 and B95-8 viruses can induce abortive infection in Raji cells, but while the defective molecules are not needed for induction of early antigen diffuse components, they may be required for the induction of viral DNA synthesis.  相似文献   

3.
J Luka  H Jrnvall    G Klein 《Journal of virology》1980,35(3):592-602
The Epstein-Barr virus-determined nuclear antigen (EBNA) was purified 700-fold to apparent homogeneity from Raji and Namalwa cell extracts by a three-step procedure involving heat treatment, DNA-cellulose chromatography, and hydroxyapatite chromatography. Acid-fixed nuclear binding and complement fixation were used to monitor antigenic specificity. Purified EBNA was also capable of specifically inhibiting the regular anticomplement immunofluorescence reaction for EBNA against Raji target cells. The purified antigen had a molecular weight of 170,000 to 200,000. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it yielded a single 48,000-dalton (48K) monomer. An EBNA-associated protein was also purified from the same cell extract. It had a molecular weight of about 200,000 and yielded a single 53K protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The same protein was also found in Epstein-Barr virus negative B-cell lymphoma lines. The two types of protein were characterized by amino acid composition and peptide mapping. The results showed that the 53K and 48K protein components have no long regions in common; this excludes that the smaller product arises by breakdown of the larger product. Residue distributions were different, but an excess of hydrophilic residues was found in both proteins, suggesting a certain overall similarity in properties. 53K components from different cell lines appeared to differ somewhat. Epstein-Barr virus-positive lines carry two 53K components, one of which may be a slightly modified 53K product. Immunocomplexing assay showed that the 48K, but not the 53K, protein carries EBNA specificity. In mixtures, the 53K protein is co-precipitated with the 48K protein. The data suggest that EBNA may form a complex with the 53K proten within the cell.  相似文献   

4.
M L Hammarskj?ld  S C Wang  G Klein 《Gene》1986,43(1-2):41-50
To construct a recombinant plasmid designed to yield large amounts of the Epstein-Barr virus (EBV) nuclear antigen, EBNA1, the EBV BamHI-K fragment (B95-8 strain) was inserted into an expression vector composed of SV40 and pBR322 DNA. The vector replicates in both Escherichia coli and eukaryotic cells. Introduction of such a BamHI-K-containing vector into CV1 monkey cells (using DEAE-dextran, glycerol and chloroquine diphosphate) gave high yields of the correct size EBNA1 protein in 40-50% of the transfected cells. Maximal amounts of EBNA1 could be extracted from the cells at 65-72 h post transfection. Using a quantitative ELISA assay, it was estimated that transfected cells express 500-1000 times more EBNA1 than lymphoid cells, latently infected with EBV. A monoclonal antibody directed against EBNA1 immunoprecipitated two proteins of 74 and 62 kDa from transfected cells. These same two proteins were detected in immunoprecipitation and immunoblot experiments using human EBV-positive polyclonal serum, although this serum also detected several other protein products in transfected cells. In vivo labelling of transfected cells with [32P]orthophosphate showed that the 74- and 62-kDa proteins are modified by phosphorylation. The same vector construction was also used to transfect an EBV-negative human lymphoblastoid cell line (Ramos). Expression of the EBNA1 protein was obtained in up to 20% of the cells.  相似文献   

5.
Sodium butyrate induces the Epstein-Barr virus cycle in latently infected P3HR-1 cells with a high efficiency. This fact was utilized for the metabolic labeling of the Epstein-Barr virus antigens. Nonproducer Raji cells, lacking both early antigen and viral capsid antigen, were used as controls. Immunoprecipitation patterns were compared with 13 anti-Epstein-Barr virus (viral capsid antigen) - positive and 3 negative sera. Sixteen polypeptides were identified as being associated with the lytic Epstein-Barr virus cycle. Their molecular weights ranged from 31,000 (31K) to 275K on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two polypeptides, 158K and 165K, could be classified as late viral products on the basis of their sensitivity to cytosine arabinoside. Six of the polypeptides, i.e., 90K, 95K, 134K, 165K, 236K, and 275K, were detected by [(3)H]glucosamine labeling. Among the early, cytosine arabinoside-insensitive polypeptides detected by [(35)S]methionine labeling, a 152K component appears to be a major constituent of early antigen. This polypeptide was precipitated by all anti-Epstein-Barr virus-positive sera tested. As a rule, together with the 103K and 134K polypeptides, the 152K component is precipitated by anti-early antigen, R (restricted) antibodies. In addition, anti-early antigen D (diffuse) antibodies precipitate 31K, 51K, 65K, and 90K components.  相似文献   

6.
Partial purification of the Epstein-Barr virus nuclear antigen(s)   总被引:11,自引:0,他引:11  
The Epstein-Barr virus nuclear antigen (EBNA) is speculated to be involved in cell transformation by the virus. Studies on the molecular properties of EBNA, however, have yielded conflicting results. In this study, three Epstein-Barr virus(EBV)-induced antigens were isolated and purified from extracts prepared from Raji cells. These antigens were able to block the anticomplement immunofluorescence reaction, indicating that all three were related to EBNA. The soluble antigen was found wholly in the cytosol fraction. An EBV-induced nuclear antigen I was found both in the cytosol and the nucleus. The EBV-induced nuclear antigen II was found associated with the chromatin. The soluble antigen and the nuclear antigen I were separated and partially purified using phosphocellulose chromatography. Each was further purified 1,400-fold with respect to the whole cell state by chromatography on CL-Sepharose 6B followed by blue dextran-Sepharose. subunit molecular weights of 70,000 were determined for each of these antigens, both in the crude and purified state, by radioimmunoelectrophoresis and gel filtration. The nuclear antigen II was purified 2,500-fold using hydroxylapatite, CL-Sepharose 6B, and blue dextran-Sepharose chromatographies. This antigen displayed two subunits by radioimmunoelectrophoresis with molecular weights of 65,000 and 70,000. Although all antigens shared similar molecular weights, the extent of their homology remains to be determined.  相似文献   

7.
A correlation between Epstein-Barr virus membrane antigen (MA) and three surface glycoproteins has been established on the basis of radio-immunoprecipitation and immunoabsorption experiments. For radio-immunoprecipitation, Epstein-Barr virus-infected cells were radiolabeled either with neuraminidase-galactose oxidase tritiated borohydride, a procedure highly specific for surface glycoproteins, or with a general tritiated amino acid mixture. Intact cells were incubated with MA(-) or MA(+) human sera, washed free of unbound immunoglobulins, and then lysed with Nonidet P-40. The antigen-antibody complexes were bound to protein A-Sepharose and after elution with sodium dodecyl sulfate were analyzed by acrylamide gel electrophoresis in sodium dodecyl sulfate. MA(+) sera specifically precipitated three glycoproteins with molecular weights of 236,000, 212,000, and 141,000 from B95-8 cells induced with 12-O-tetradecanoylphorbal-13-acetate (TPA) and from Raji cells superinfected with P3HR-1 virus. These glycoproteins were not detected on Epstein-Barr virus-negative Ramos cells treated with TPA or on B95-8 cells treated simultaneously with TPA and phosphonoacetic acid. Soybean lectin-Sepharose bound all three glycoproteins, and lectin-Sepharose-bound glycoproteins from TPA-induced P95-8 cells absorbed MA-specific antibody from MA(+) human sera. The data strongly suggest that either all three glycoproteins have MA determinants or they are part of a complex in which one or more of the components constitute the reactive antigen.  相似文献   

8.
Epstein-Barr virus (EBV) nonproducer Raji cells stably maintain approximately 45 copies of the EBV genome per cell, depending on the presence of the EBV-determined nuclear antigen 1 (EBNA-1) protein. We found that transfection of the EBV BZLF1 gene causes the disappearance of EBNA proteins on Western blots (immunoblots). On the basis of these results, we attempted to eliminate EBV plasmids in Raji cells by transfecting a BZLF1 plasmid. Among 33 clones that were cotransfected with a BZLF1 plasmid and a hygromycin B resistance plasmid and selected resistant for hygromycin B, 24 clones had decreased numbers of EBV plasmids, as revealed by the decrease in the intensity of the EBV band on Southern blots compared with that of nontransfected Raji cells.  相似文献   

9.
F Wang  L Petti  D Braun  S Seung    E Kieff 《Journal of virology》1987,61(4):945-954
EBNA2 is a nuclear protein expressed in all cells latently infected with and growth transformed by Epstein-Barr virus (EBV) infection (K. Hennessy and E. Kieff, Science 227:1230-1240, 1985). The nucleotide sequence of the EBNA2 mRNA (J. Sample, M. Hummel, D. Braun, M. Birkenbach, and E. Kieff, Proc. Natl. Acad. Sci. USA 83:5096-5100, 1986) revealed that it begins with a 924-base open reading frame that has an unusual potential translational initiation site (CAAATGG). This open reading frame is followed by 138 nucleotides with only one highly unlikely translational initiation site (TACATGC), which would translate a pentapeptide before the next stop codon. The last part of the mRNA is the open reading frame which encodes EBNA2. In this paper, we demonstrate that the 924-base open reading frame translates a 40-kilodalton protein in vitro or in murine cells transfected with the EBNA2 cDNA under control of the murine leukemia virus long terminal repeat. A protein of identical size was detected in EBV-transformed, latently infected human lymphocyte nuclei by using antibody specific for the leader open reading frame expressed in bacteria. Therefore, this is a rare example of a mRNA which translates two proteins from nonoverlapping open reading frames. Since the protein encoded by the leader of the EBNA mRNA is expressed in all nuclei of a latently infected cell line, it was designated EBNA-LP. EBNA-LP localizes to small intranuclear particles and differs in this respect from EBNA1, EBNA2, or EBNA3. EBNA-LP is not expressed in an EBV-transformed marmoset lymphocyte cell (B95-8) or in one EBV-infected Burkitt tumor cell line (Raji) but is expressed in three other Burkitt tumor cell lines (Namalwa, P3HR-1, and Daudi).  相似文献   

10.
J Finke  M Rowe  B Kallin  I Ernberg  A Rosn  J Dillner    G Klein 《Journal of virology》1987,61(12):3870-3878
The Epstein-Barr virus nuclear antigen 5 (EBNA-5) is encoded by highly spliced mRNA from the major IR1 (BamHI-W) repeat region of the virus genome. A mouse monoclonal antibody, JF186, has been raised against a synthetic 18-amino-acid peptide deduced from the EBNA-5 message of B95-8 and Raji cells. The antibody showed characteristic coarse nuclear granules by indirect immunofluorescence and revealed multiple EBNA-5 species by immunoblotting and immunoprecipitation. The B95-8 line itself and all B95-8 virus-carrying cells, whether lymphoblastoid cell lines or in vitro-converted sublines of Epstein-Barr virus (EBV)-negative Burkitt's lymphoma (BL) lines, were EBNA-5 positive. Among 36 cell lines carrying different EBV strains, only 10 expressed the B95-8-Raji-prototype EBNA-5 recognized by JF186; this was probably due to genetic variation in the epitope recognized by JF186, as shown for P3HR-1. Human antibodies, affinity purified against EBNA-5-JF186 immunoprecipitates, detected EBNA-5 in the majority of EBV-positive BL lines and in all lymphoblastoid cell lines containing the BL-derived viruses. Thus, EBNA-5 can be expressed by all virus isolates examined, but is down-regulated, together with other latent gene products, in a minority of BL lines which have a particular cellular phenotype. EBNA-5 was detected as a ladder of protein species of 20 to 130 kilodaltons (kDa), with a regular spacing of 6 to 8 kDa, consistent with the coding capacity of the combined BamHI-W 66- and 132-base-pair exons, together with shifts of 2 to 4 kDa, consistent with the size of the separate 66- and 132-base-pair exons. Multiple EBNA-5 proteins can be expressed by the single cell as shown by cloning of newly infected cells.  相似文献   

11.
Epstein-Barr virus (EBV) isolates show sequence divergence in the BamHI YH region of the genome which encodes the nuclear antigen EBNA 2, a protein thought to be involved in the initiation of virus-induced B-cell transformation; type A isolates (such as B95-8 EBV) encode a 82- to 87-kilodalton EBNA 2A protein, whereas type B isolates (such as AG876 EBV) encode an antigenically distinct 75-kilodalton EBNA 2B protein. In the present work 12 type A isolates and 8 type B isolates have been compared for their ability to transform resting human B cells in vitro into permanent lymphoblastoid cell lines. Although the kinetics of initial focus formation was not markedly dependent upon the EBNA 2 type of the transforming virus, on subsequent passage type A virus-transformed cells (type A transformants) yielded cell lines much more readily than did type B transformants. Direct comparison between the two types of transformant revealed clear differences in several aspects of growth phenotype. Compared with type A transformants, cell lines established with type B virus isolates consistently displayed an unusual growth pattern with poor survival of individual cells shed from lymphoblastoid clumps, a lower growth rate and a greater sensitivity to seeding at limiting dilutions, and a significantly lower saturation density that could not be corrected by supplementation of the medium with culture supernatant containing B-cell growth factors. This is the first direct evidence that, in EBV-transformed B-cell lines, the EBNA 2 protein plays a continuing role in determining the cellular growth phenotype.  相似文献   

12.
13.
A set of B-cell activation molecules, including the Epstein-Barr virus (EBV) receptor CR2 (CD21) and the B-cell activation antigen CD23 (Blast2/Fc epsilon RII), is turned on by infecting EBV-negative B-lymphoma cell lines with immortalizing strains of the viruslike B95-8 (BL/B95 cells). This up regulation may represent one of the mechanisms involved in EBV-mediated B-cell immortalization. The P3HR1 nonimmortalizing strain of the virus, which is deleted for the entire Epstein-Barr nuclear antigen 2 (EBNA2) protein open reading frame, is incapable of inducing the expression of CR2 and CD23, suggesting a crucial role for EBNA2 in the activation of these molecules. In addition, lymphoma cells containing the P3HR1 genome (BL/P3HR1 cells) do not express the viral latent membrane protein (LMP), which is regularly expressed in cells infected with immortalizing viral strains. Using electroporation, we have transfected the EBNA2 gene cloned in an episomal vector into BL/P3HR1 cells and have obtained cell clones that stably express the EBNA2 protein. In these clones, EBNA2 expression was associated with an increased amount of CR2 and CD23 steady-state RNAs. Of the three species of CD23 mRNAs described, the Fc epsilon RIIa species was preferentially expressed in these EBNA2-expressing clones. An increased cell surface expression of CR2 but not of CD23 was observed, and the soluble form of CD23 molecule (SCD23) was released. We were, however, not able to detect any expression of LMP in these cell clones. These data demonstrate that EBNA2 gene is able to complement P3HR1 virus latent functions to induce the activation of CR2 and CD23 expression, and they emphasize the role of EBNA2 protein in the modulation of cellular gene implicated in B-cell proliferation and hence in EBV-mediated B-cell immortalization. Nevertheless, EBNA2 expression in BL/P3HR1 cells is not able to restore the level of CR2 and CD23 expression observed in BL/B95 cells, suggesting that other cellular or viral proteins may also have an important role in the activation of these molecules: the viral LMP seems to be a good candidate.  相似文献   

14.
Cell lines were established by co-transfection of cloned M-ABA Epstein-Barr virus (EBV) DNA fragments with plasmids conferring resistance to dominant selective markers. A baby hamster kidney cell line carrying the HindIII-I1 fragment exhibits a nuclear antigen of 82 000 daltons, serologically defined as EBV-determined nuclear antigen (EBNA) 1. Furthermore, a Rat-1 cell line transfected with DNA of the clone pM 780-28 containing three large internal repeats (BglII-U) and the adjacent BglII-C fragment expresses a nuclear antigen of 82 000 daltons which can be visualized only by a subset of anti EBNA-positive human sera. Sera recognizing the 82 000-dalton protein of the transfected cell line reacted with a protein of the same size in the non-producer line Raji, designated as EBNA 2. Conversely, sera without reactivity to the 82 000-dalton protein failed to react with EBNA 2 of Raji cells. P3HR-1 and Daudi cells with large deletions in BglII-U and -C are devoid of EBNA 2. The data presented provide evidence that a second EBNA protein is encoded by the region of the EBV genome which is deleted in the non-transforming P3HR-1 strain.  相似文献   

15.
A 62,000-dalton (62K) cell protein reacts with antisera to the 72K polypeptide of the Epstein-Barr virus nuclear antigen (EBNA) in immunoblots. This protein was initially detected in EBNA-negative as well as EBNA-positive cell lines with anti-EBNA-positive human sera. A monoclonal antibody raised against the 72K EBNA and an antiserum from a rabbit immunized with the glycine-alanine domain of EBNA also reacted with the cellular protein. The cellular protein was partially purified from Epstein-Barr virus genome-positive and -negative cell lines. Absorption experiments identified a shared antigenic determinant between the 72K EBNA and 62K cellular protein. A comparison of the 62K protein and EBNA by protease digestion did not reveal similar peptides.  相似文献   

16.
A simplified procedure, based on several methods previously used to isolate circular DNA molecules from bacteria, was derived for the preparation of covalently closed circular viral DNA molecules from large quantities of lymphocytes transformed by Epstein-Barr virus. The protocol can be applied both to virus nonproducer lines and to lines containing cells activated to virus production. Sufficient amounts o highly purified viral DNA of intracellular origin were obtained from B95-8 and Raji cells to allow direct visual analysis of their sequence complexities after cleavage with EcoRI and separation of fragments by gel electrophoresis. No major differences in complexity were observed between circular DNA and linear virion DNA from B95-8 cells. The fragment patterns observed in this fashion agree well with those detected by conventional blotting and hybridization methods. The procedure can also be used as an analytical method to assay for small amounts of circular Epstein-Barr virus DNA molecules in other transformed cells. In this connection, no circular Epstein-Barr virus DNA was detected in Namalva cells.  相似文献   

17.
18.
We report the use of monoclonal antibody against the early antigen diffuse component (anti-EA-D) of Epstein-Barr virus (EBV) to analyze, both qualitatively and quantitatively, the expression of EA-D in various human lymphoblastoid cell lines activated by chemical inducers. The kinetics of synthesis of EA-D in P3HR-1, B95-8, and Ramos/AW cells were similar in that they all reached the peak of synthesis on day 5 after induction. Surprisingly, no expression of EA-D was found in induced BJAB/GC, an EBV-genome-containing cell line. EBV-negative cell lines, BJAB and Ramos, were negative for EA-D. Raji cells had no detectable EA-D but responded rapidly to induction, reaching a peak on day 3. Superinfection of Raji cells also resulted in marked induction of EA-D, which reached a plateau between 8 to 12 h postinfection. Western blotting coupled with the enzyme-linked immunosorbent assay was employed to identify polypeptides representing EA-D. A family of four polypeptides with molecular weights of 46,000 (46K protein), 49,000, 52,000, and 55,000 were identified to be reactive with monoclonal anti-EA-D antiserum. The pattern of EA-D polypeptides expressed in each cell line was different. Of particular interest was the expression of a large quantity of 46K protein both in induced Raji and P3HR-1 cells, but not in superinfected Raji cells. A 49K doublet was expressed in activated p3HR-1, B95-8, and Ramos/AW cells and in superinfected Raji cells. In addition, two distinct 52K and 55K polypeptides were expressed in induced Ramos/AW and superinfected Raji cells. However, none of these EA-D polypeptides was detectable in BJAB/GC, BJAB, Ramos, and mock-infected Raji cells. To approximate relative concentrations of EA-D in cell extracts, we employed the enzyme-linked immunosorbent assay and immunoblot dot methods by using one of the purified EA-D components to construct a standard curve. Depending upon the cell lines, it was estimated that ca. 1 to 3% (determined by the enzyme-linked immunosorbent assay) and 0.8 to 1.6% (determined by immunoblot dot) of total proteins from maximally induced cells were EA-D. These results suggest that differential expression of EA-D polypeptides could be of importance in the diagnosis of state of EBV infection.  相似文献   

19.
J Luka  T Lindahl    G Klein 《Journal of virology》1978,27(3):604-611
The Epstein-Barr virus-determined nuclear antigen (EBNA) was purified from extracts of the human lymphoid cell lines Raji, Namalwa, and B95-8/MLD by two different methods. In the first approach, the apparently native antigen was purified 1,200-fold by a four-step procedure involving DNA-cellulose chromatography, blue dexptran-agarose chromatography, hydroxyapatite chromatography, and gel filtration, employing complement fixation as the assay procedure. Such EBNA preparations specifically inhibited the anticomplement immunofluorescence test for EBNA and bound to methanol/acetic acid-fixed metaphase chromosomes. The purified antigen, which has a molecular weight of 170,000 to 200,000, yielded a single protein band of molecular weight about 48,000 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. These data indicate that native EBNA has a tetrameric structure. In the second purification method, EBNA-containing cell extracts containing radioactively labeled proteins were incubated with anti-EBNA-positive sera, and antigen-antibody complexes were adsorbed to matrix-bound staphylococcal protein A. The bound proteins were then released with an SDS-containing buffer, and denatured EBNA was separated from antibody chains by SDS-polyacrylamide gel electrophoresis and visualized by fluorography. The denatured EBNA obtained in radiochemically pure form by this procedure has a molecular weight of about 48,000, so both methods yield an EBNA monomer of the same size.  相似文献   

20.
C Rooney  J G Howe  S H Speck    G Miller 《Journal of virology》1989,63(4):1531-1539
The Epstein-Barr virus (EBV) genes expressed in B lymphocytes immortalized in vitro or in Burkitt's lymphoma (BL) cells infected in vivo have been characterized previously; however, the viral products which are essential for immortalization or for establishment of EBV latency are still not known. To approach this question, we compared the kinetics of expression of EBV nuclear antigens and the two EBV-encoded small RNAs, EBER1 and EBER2, after infection of primary B cells or EBV genome-negative BL cells with either an immortalizing EBV strain (B95-8) or the nonimmortalizing deletion mutant (HR-1). Following infection of primary cells with B95-8 virus, EBV nuclear antigen (EBNA)-2 was expressed first, followed by EBNA-1, -3, and -4 (also called leader protein [LP]) and the two small RNAs. Infection of EBV genome-negative BL cells with the same strain of virus resulted in a similar pattern of gene expression, except that the EBNAs appeared together and more rapidly. EBERs were not apparent in one BL cell line converted by B95-8. The only products detected after infection of primary B lymphocytes with the HR-1 deletion mutant were the EBNA-4 (LP) family and trace amounts of EBER1. Although HR-1 could express neither EBNA-1, EBNA-3, nor EBER2 in primary cells, all these products were expressed rapidly after HR-1 infection of EBV genome-negative BL cell lines. The results indicate that the mutation in HR-1 virus affects immortalization not only through failure to express EBNA-2, a gene which is deleted, but also indirectly by curtailing expression of several other EBV genes whose coding regions are intact in the HR-1 virus and normally expressed during latency. The pattern of latent EBV gene expression after HR-1 infection is dependent on the host cell, perhaps through products specific for the cell cycle or the state of B-cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号