首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S acylation of cysteines located in the transmembrane and/or cytoplasmic region of influenza virus hemagglutinins (HA) contributes to the membrane fusion and assembly of virions. Our results from using mass spectrometry (MS) show that influenza B virus HA possessing two cytoplasmic cysteines contains palmitate, whereas HA-esterase-fusion glycoprotein of influenza C virus having one transmembrane cysteine is stearoylated. HAs of influenza A virus having one transmembrane and two cytoplasmic cysteines contain both palmitate and stearate. MS analysis of recombinant viruses with deletions of individual cysteines, as well as tandem-MS sequencing, revealed the surprising result that stearate is exclusively attached to the cysteine positioned in the transmembrane region of HA.  相似文献   

2.
Weigel PH  Baggenstoss BA 《Glycobiology》2012,22(10):1302-1310
Streptococcus equisimilis hyaluronan (HA) synthase (SeHAS) contains four cysteines (C226, C262, C281 and C367) that are conserved in the mammalian HAS family. Previous studies of single Cys-to-Ser and all possible Cys-to-Ala mutants of SeHAS found that: the Cys-null mutant is active, Cys modification inhibits HAS activity and the conserved cysteines are clustered at the membrane-enzyme interface in substrate-binding sites (Kumari K, Weigel PH. 2005. Identification of a membrane-localized cysteine cluster near the substrate binding sites of the Streptococcus equisimilis hyaluronan synthase. Glycobiology. 15:529-539). We re-examined these Cys mutants using a single technique (size exclusion chromatography-multi-angle laser light scattering) that allows simultaneous assays on the same sample for both HA synthesis activity and HA product size. Among 18 mutants compared with wild type, 4 showed no change in either function and 3 showed changes in both (decreased activity and HA size). Only one of the two functions was altered in 11 other mutants, which showed either decreased polymerizing activity or product size. No mutants made larger HA, 8 made smaller HA and 10 showed no change in HA size. Nine mutants showed no change in activity and nine were less active. The mutants fell into four of nine possible groups in terms of changes in HA size or synthesis rate (i.e. none, increased or decreased). Specific Cys residues were associated with each mutant group and the pattern of effects on both functions. Thus, the four conserved Cys residues, individually and in specific combinations, influence the rate of sugar assembly by HAS and HA product size, but their participation in one function is independent of the other.  相似文献   

3.
Chen BJ  Takeda M  Lamb RA 《Journal of virology》2005,79(21):13673-13684
The influenza A virus hemagglutinin (HA) transmembrane domain boundary region and the cytoplasmic tail contain three cysteines (residues 555, 562, and 565 for the H3 HA subtype) that are highly conserved among the 16 HA subtypes and which are each modified by the covalent addition of palmitic acid. Previous analysis of the role of these conserved cysteine residues led to differing data, suggesting either no role for HA palmitoylation or an important role for HA palmitoylation. To reexamine the role of these residues in the influenza virus life cycle, a series of cysteine-to-serine mutations were introduced into the HA gene of influenza virus A/Udorn/72 (Ud) (H3N2) by using a highly efficient reverse genetics system. Mutant viruses containing HA-C562S and HA-C565S mutations had reduced growth and failed to form plaques in MDCK cells but formed wild-type-like plaques in an MDCK cell line expressing wild-type HA. In cell-cell fusion assays, nonpalmitoylated H3 HA, in both cDNA-transfected and virus-infected cells, was fully competent for HA-mediated membrane fusion. When the HA cytoplasmic tail cysteine mutants were examined for lipid raft association, using as the criterion Triton X-100 insolubility, loss of raft association did not show a direct correlation with a reduction in virus replication. However, mutant virus assembly was reduced in parallel with reduced virus replication. Additionally, a reassortant of strain A/WSN/33 (WSN), containing the Ud HA gene with mutations C555S, C562S, and C565S, produced virus that could form plaques on regular MDCK cells and had only moderately decreased replication, suggesting differences in the interactions between Ud and WSN HA and internal viral proteins. Analysis of M1 mutants containing substitutions in the six residues that differ between the Ud and WSN M1 proteins indicated that a constellation of residues are responsible for the difference between the M1 proteins in their ability to support virus assembly with nonpalmitoylated H3 HA.  相似文献   

4.
Engel S  de Vries M  Herrmann A  Veit M 《FEBS letters》2012,586(3):277-282
Inclusion of proteins into membrane-rafts favours interactions required for virus assembly but has also been proposed to facilitate vesicular transport of proteins. The hemagglutinin (HA) of influenza virus contains a raft-targeting sequence in the outer leaflet of its transmembrane region. We report that its mutation enhances co-localization of HA with a cis-Golgi marker and retards Golgi-localized processing, such as acquisition of Endo-H resistant carbohydrates and proteolytic cleavage. In contrast, trimerization of the molecule in the ER and transport to the apical membrane were not affected. The second signal for raft-targeting, S-acylation at cytoplasmic cysteines, did not retard HA transport.  相似文献   

5.
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped positive-strand RNA virus in the Arteiviridae family, is a major pathogen affecting pigs worldwide. The membrane (glyco)proteins GP5 and M form a disulfide-linked dimer, which is a major component of virions. GP5/M are required for virus budding, which occurs at membranes of the exocytic pathway. Both GP5 and M feature a short ectodomain, three transmembrane regions, and a long cytoplasmic tail, which contains three and two conserved cysteines, respectively, in close proximity to the transmembrane span. We report here that GP5 and M of PRRSV-1 and -2 strains are palmitoylated at the cysteines, regardless of whether the proteins are expressed individually or in PRRSV-infected cells. To completely prevent S-acylation, all cysteines in GP5 and M have to be exchanged. If individual cysteines in GP5 or M were substituted, palmitoylation was reduced, and some cysteines proved more important for efficient palmitoylation than others. Neither infectious virus nor genome-containing particles could be rescued if all three cysteines present in GP5 or both present in M were replaced in a PRRSV-2 strain, indicating that acylation is essential for virus growth. Viruses lacking one or two acylation sites in M or GP5 could be rescued but grew to significantly lower titers. GP5 and M lacking acylation sites form dimers and GP5 acquires Endo-H resistant carbohydrates in the Golgi apparatus suggesting that trafficking of the membrane proteins to budding sites is not disturbed. Likewise, GP5 lacking two acylation sites is efficiently incorporated into virus particles and these viruses exhibit no reduction in cell entry. We speculate that multiple fatty acids attached to GP5 and M in the endoplasmic reticulum are required for clustering of GP5/M dimers at Golgi membranes and constitute an essential prerequisite for virus assembly.  相似文献   

6.
Y C Huang  R F Colman 《Biochemistry》1990,29(36):8266-8273
Pig heart NAD-dependent isocitrate dehydrogenase has a subunit structure consisting of alpha 2 beta gamma, with the alpha subunit exhibiting a molecular weight of 39,000 and the beta and gamma each having molecular weights of 41,000. The amino-terminal sequences (33-35 residues) and the cysteinyl peptide sequences have now been determined by using subunits separated by chromatofocusing or isoelectric focusing and electroblotting. Displacement of the N-terminal sequence of the alpha subunit by 11-12 amino acids relative to that of the larger beta and gamma subunits reveals a 17 amino acid region of great similarity in which 10 residues are identical in all three subunits. The complete enzyme has 6.0 free SH groups per average subunit of 40,000 daltons, but yields 15 distinguishable cysteines in isolated tryptic peptides. Six distinct cysteines in sequenced peptides have been located in the alpha subunit. The beta and gamma subunits contain seven and five cysteines, respectively, with tryptic peptides containing three cysteines being common to the beta and gamma subunits. The three subunits appear to be closely related, but beta and gamma are more similar to each other than either is to the alpha subunit. The NAD-specific isocitrate dehydrogenase from pig heart has been shown to have 2 binding sites/enzyme tetramer for isocitrate, manganous ion, NAD+, and the allosteric activator ADP [Colman, R. F. (1983) Pept. Protein Rev. 1, 41-69]. It is proposed that the catalytically active tetrameric enzyme is organized as a dimer of dimers in which the alpha beta and alpha gamma dimers are nonidentical but functionally similar.  相似文献   

7.
Conformation, structure, and oligomeric state of immunoglobulins not only control quality and functional properties of antibodies but are also critical for immunoglobulins secretion. Unassembled immunoglobulin heavy chains are retained intracellularly by delayed folding of the C(H)1 domain and irreversible interaction of BiP with this domain. Here we show that the three C(H)1 cysteines play a central role in immunoglobulin folding, assembly, and secretion. Remarkably, ablating all three C(H)1 cysteines negates retention and enables BiP cycling and non-canonical folding and assembly. This phenomenon is explained by interdependent formation of intradomain and interchain disulfides, although both bonds are dispensable for secretion. Substituting Cys-195 prevents formation not only of the intradomain disulfide, but also of the interchain disulfide bond with light chain, BiP displacement, and secretion. Mutating the light chain-interacting Cys-128 hinders disulfide bonding of intradomain cysteines, allowing their opportunistic bonding with light chain, without hampering secretion. We propose that the role of C(H)1 cysteines in immunoglobulin assembly and secretion is not simply to engage in disulfide bridges, but to direct proper folding and interact with the retention machinery.  相似文献   

8.
T Zurcher  G Luo    P Palese 《Journal of virology》1994,68(9):5748-5754
The carboxy terminus of the hemagglutinin (HA) of influenza A viruses contains three cysteine residues which are highly conserved among HA subtypes. It has previously been shown for the H2, H3, and H7 subtypes of HA that these cysteine residues are modified by the covalent attachment of palmitic acid. In order to study the role of the acylated cysteines in the formation of infectious influenza viruses, we introduced mutations into the HA of influenza A/WSN/33 virus (H1 subtype) by reverse-genetics techniques. We found that the cysteine at position 563 of the cytoplasmic tail is required for infectious-particle formation. The cysteine at position 560 can be changed to alanine or tyrosine to yield virus strains that are attenuated in cell cultures. The change from cysteine at position 553 to serine or alanine does not significantly alter the phenotype of the virus. The requirement for a cysteine at position 563 suggests a functional role for palmitylation of the cytoplasmic tail. This interpretation is further supported by experiments in which two or more of the cysteine residues were mutated, eliminating potential palmitylation sites. None of these double or triple mutations resulted in infectious virus. Selection of revertants of the attenuated cysteine-to-tyrosine mutant (mutation at position 560) always resulted in reversion to cysteine rather than to other amino acids. Although our data indicate a biological role for the conserved cysteine residues in the cytoplasmic tail of the HA of influenza viruses, we cannot exclude the possibility that structural constraints in the cytoplasmic tail of the HA--rather than altered palmitylation--are the determining factors for infectious-particle formation.  相似文献   

9.
10.
Paramyxoviruses initiate entry through the concerted action of the tetrameric attachment glycoprotein (HN, H, or G) and the trimeric fusion glycoprotein (F). The ectodomains of HN/H/G contain a stalk region important for oligomeric stability and for the F triggering resulting in membrane fusion. Paramyxovirus HN, H, and G form a dimer-of-dimers consisting of disulfide-linked dimers through their stalk domain cysteines. The G attachment protein stalk domain of the highly pathogenic Nipah virus (NiV) contains a distinct but uncharacterized cluster of three cysteine residues (C146, C158, C162). On the basis of a panoply of assays, we report that C158 and C162 of NiV-G likely mediate covalent subunit dimerization, while C146 mediates the stability of higher-order oligomers. For HN or H, mutation of stalk cysteines attenuates but does not abrogate the ability to trigger fusion. In contrast, the NiV-G stalk cysteine mutants were completely deficient in triggering fusion, even though they could still bind the ephrinB2 receptor and associate with F. Interestingly, all cysteine stalk mutants exhibited constitutive exposure of the Mab45 receptor binding-enhanced epitope, previously implicated in F triggering. The enhanced binding of Mab45 to the cysteine mutants relative to wild-type NiV-G, without the addition of the receptor, implicates the stalk cysteines in the stabilization of a pre-receptor-bound conformation and the regulation of F triggering. Sequence alignments revealed that the stalk cysteines were adjacent to a proline-rich microdomain unique to the Henipavirus genus. Our data propose that the cysteine cluster in the NiV-G stalk functions to maintain oligomeric stability but is more importantly involved in stabilizing a unique microdomain critical for triggering fusion.  相似文献   

11.
To study the importance of individual sulfhydryl residues during the folding and assembly in vivo of influenza virus hemagglutinin (HA), we have constructed and expressed a series of mutant HA proteins in which cysteines involved in three disulfide bonds have been substituted by serine residues. Investigations of the structure and intracellular transport of the mutant proteins indicate that (a) cysteine residues in the ectodomain are essential both for efficient folding of HA and for stabilization of the folded molecule; (b) cysteine residues in the globular portion of the ectodomain are likely to form native disulfide bonds rapidly and directly, without involvement of intermediate, nonnative linkages; and (c) cysteine residues in the stalk portion of the ectodomain also appear not to form intermediate disulfide bonds, even though they have the opportunity to do so, being separated from their correct partners by hundreds of amino acids including two or more other sulfhydryl residues. We propose a role for the cellular protein BiP in shielding the cysteine residues of the stalk domain during the folding process, thus preventing them from forming intermediate, nonnative disulfide bonds.  相似文献   

12.
The C terminus of the influenza virus hemagglutinin (HA) contains three cysteine residues that are highly conserved among HA subtypes, two in the cytoplasmic tail and one in the transmembrane domain. All of these C-terminal cysteine residues are modified by the covalent addition of palmitic acid through a thio-ether linkage. To investigate the role of HA palmitylation in virus assembly, we used reverse genetics technique to introduce substitutions and deletions that affected the three conserved cysteine residues into the H3 subtype HA. The rescued viruses contained the HA of subtype H3 (A/Udorn/72) in a subtype H1 helper virus (A/WSN/33) background. Rescued viruses which do not contain a site for palmitylation (by residue substitution or substitution combined with deletion of the cytoplasmic tail) were obtained. Rescued virions had a normal polypeptide composition. Analysis of the kinetics of HA low-pH-induced fusion of the mutants showed no major change from that of virus with wild-type (wt) HA. The PFU/HA ratio of the rescued viruses grown in eggs ranged from that of virus with wt HA to 16-fold lower levels, whereas the PFU/HA ratio of the rescued viruses grown in MDCK cells varied only 2-fold from that of virus with wt HA. However, except for one rescued mutant virus (CAC), the mutant viruses were attenuated in mice, as indicated by a > or = 400-fold increase in the 50% lethal dose. Interestingly, except for one mutant virus (CAC), all of the rescued mutant viruses were restricted for replication in the upper respiratory tract but much less restricted in the lungs. Thus, the HA cytoplasmic tail may play a very important role in the generation of virus that can replicate in multiple cell types.  相似文献   

13.
Seven integral proteins (CE 9, HA 21, HA 116, HA 16, HA 4, HA 201, and HA 301) were isolated from rat hepatocyte plasma membranes by immunoaffinity chromatography on monoclonal antibody-Sepharose. Six of the proteins (all but HA 16) exhibit domain-specific localizations (either bile canalicular or sinusoidal/lateral) about the hepatocyte surface. We identified three of these protein antigens as leucine aminopeptidase (HA 201), dipeptidyl peptidase IV (HA 301), and the asialoglycoprotein receptor (HA 116). We also developed 125I-lectin blotting procedures that, when used in conjunction with chemical and glycosidase treatments, permitted a comparison of the types of oligosaccharides present on the seven proteins. All seven are sialoglycoproteins, based upon the effects of prior neuraminidase and periodate-aniline-cyanoborohydride treatments of blots on labeling by 125I-wheat germ agglutinin. 125I-labeled Ricinus communis agglutinin I and 125I-peanut agglutinin blotting of the desialylated proteins revealed few if any conventional O-linked oligosaccharides, suggesting that the sialyl residues represent termini of N-linked complex-type oligosaccharides. Depending upon the protein, we estimated the presence of 2-26 N-linked oligosaccharides/polypeptide chain from the Mr reductions accompanying chemical or enzymatic deglycosylation. Three of these mature plasma membrane proteins (HA 21, HA 116, and HA 4) have both high mannose-type and complex-type oligosaccharides on every copy of their polypeptide chains. The labeling of these three proteins by 125I-concanavalin A was sensitive to treatment with endoglycosidase H, and each exhibited a quantitative reduction in Mr after the treatment, as assessed independently by 125I-wheat germ agglutinin blotting. At this level of analysis, we were unable to discern differences in the types of oligosaccharides present on these seven glycoproteins that correlate with their patterns of expression within the plasma membrane domains of this polarized epithelial cell.  相似文献   

14.
Y Okuno  Y Isegawa  F Sasao    S Ueda 《Journal of virology》1993,67(5):2552-2558
When mice were immunized with the A/Okuda/57 (H2N2) strain of influenza virus, a unique monoclonal antibody designated C179 was obtained. Although C179 was confirmed to recognize the hemagglutinin (HA) glycoprotein by immunoprecipitation assays, it did not show hemagglutination inhibition activity to any of the strains of the three subtypes of influenza A virus. However, it neutralized all of the H1 and H2 strains but not the H3 strains. Moreover, it inhibited polykaryon formation induced by the H1 and H2 strains but not by the H3 strains. Two antigenic variants against C179 were obtained, and nucleotide sequence analysis revealed that amino acid sequences, from 318 to 322 of HA1 and from 47 to 58 of HA2, conserved among H1 and H2 strains were responsible for the recognition of C179. Since the two sites were located close to each other at the middle of the stem region of the HA molecule, C179 seemed to recognize these sites conformationally. These data indicated that binding of C179 to the stem region of HA inhibits the fusion activity of HA and thus results in virus neutralization and inhibition of cell-cell fusion. This is the first report which describes the presence of conserved antigenic sites on HA not only in a specific subtype but also in two subtypes of influenza A virus.  相似文献   

15.
Chorismate pathway enzymes are important as producers of nonnucleotide aromatic compounds. The enzyme chorismate lyase from Escherichia coli has been crystallized in four distinct forms, three of which have been characterized by X-ray diffraction. Despite widespread screening, all four crystal forms grow from the same chemical conditions. The wild-type enzyme tends to aggregate, even in the presence of reducing agent, and yielded only one crystal form (monoclinic, form 1) that grew in intricate clusters. Chemical modification of the cysteines mitigated problems with aggregation and solubility but did not affect crystal growth behavior. Protein aggregation was largely eliminated by mutating the protein's two cysteines to serines. The double mutant retains full enzymatic activity and crystallizes in three new forms, one of which (triclinic) diffracts to 1.1-A resolution.  相似文献   

16.
Binding of hyaluronic acid to mammalian fibrinogens   总被引:2,自引:0,他引:2  
We have postulated that the interaction of hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, with fibrin is important during the early stages of wound healing and inflammation (J. Theor. Biol. 119:219; 1986), and have demonstrated the specific binding of 125I-labeled HA to human fibrinogen (J. Biol. Chem. 261:12 586; 1986). To determine whether HA binding is limited to human fibrinogen, we tested the ability of fibrinogens from various mammalian species to bind 125I-HA using a dot-blot assay. Increasing amounts of fibrinogen were adsorbed to nitrocellulose, and incubated with 125I-HA in the presence or absence of a 100-fold excess of nonradiolabeled HA to assess specific binding. In three independent experiments, the amount of 125I-HA bound/mg fibrinogen was determined from the slope derived by linear regression analysis of specifically bound 125I-HA versus protein concentration. A Student's t-test was performed to determine whether the slopes were statistically greater than zero. HA binding was considered statistically significant when P less than 0.05 was obtained by this analysis. Rabbit and dog fibrinogens significantly bound HA in all three trials. Baboon fibrinogen demonstrated significant HA binding in two of three trials. Pig, sheep and goat fibrinogens bound HA significantly in only one of three trials, whereas horse, rat and cow fibrinogens did not bind HA significantly at all. We conclude that fibrinogen from mammalian species other than human can specifically bind HA. The ability of fibrinogen to bind HA appears to correlate with an evolutionary divergence that separated human, baboon, dog, rabbit and rat from cow, pig, horse, goat and sheep.  相似文献   

17.
抗禽流感病毒多表位DNA疫苗的构建及其免疫效力研究   总被引:17,自引:1,他引:17  
多表位DNA疫苗是建立在常规DNA疫苗基础上的一种新型疫苗。它是用表位作免疫原,这样就比较容易在一个表达载体上克隆病原体的多个抗原基因中具有免疫活性的部分。本试验以H5N1亚型禽流感病毒的HA和NP基因及其表位为基础构建了4个重组质粒:1 pIRES/HA(表达全长的HA基因);2 pIRES/tHA(只表达HA基因的主要抗原表位区);3 pIRES/tHANpep(融合表达HA基因的抗原表位区和NP基因的3个CTL表位);4 pIRES/tHANpep-IFN-γ(用鸡的IFN-γ基因取代质粒pIRES/tHANpep中的neo基因)。分别用这4个重组质粒和空载体质粒pIRES1neo肌注免疫30日龄SPF鸡。免疫3次,间隔为2周,每次每只鸡的剂量为200μg。第3次免疫后两周以高致病性禽流感病毒H5N1强毒攻击,免疫及攻毒前后均采血检测HI抗体效价和外周血CD4+、CD8+T细胞的变化。结果发现,攻毒前各质粒免疫组均检测不到HI抗体,攻毒后1周存活鸡HI抗体效价迅速升高到64~256。流式细胞仪检测显示外周血CD4+、CD8+T细胞在疫苗免疫后都有不同程度的升高。空载体质粒对照组鸡(10只)在攻毒后3~8 d内全部死亡,其他各重组质粒免疫组鸡都获得了部分保护,保护率分别是:pIRES/HA组为545%(6/11),pIRES/tHA组为30%(3/10),pIRES/tHANPep组为36.3%(4/11), pIRES/tHANPepIFNγ组为50%(5/10)。这些结果表明我们构建的多表位DNA疫苗能够诱导机体产生特异性免疫应答,并在同型禽流感强毒攻击时对鸡只提供了一定的保护。  相似文献   

18.
19.
Two peptides corresponding to HA1(181-204) and HA2(103-123) of the A/Japan/305/57 influenza virus hemagglutinin (HA) were chemically synthesized by solid-phase methods and were tested for their ability to generate murine secondary anti-influenza cytolytic T lymphocytes (CTL) in vitro and to bind monoclonal anti-HA antibodies. Peptide HA1(181-204) could only generate CTL in the presence of helper factors contained in supernatant fluids from either Concanavalin A-stimulated mouse spleen cultures or WEHI-3 cells grown in vitro. Peptide HA2(103-123) stimulated the induction of anti-influenza CTL independent of helper factors, but the stimulation was also greatly increased if helper factors were added. A 10-fold molar excess of peptide HA2(103-123) was required to obtain optimal CTL activation over the quantities required in the HA1(181-204) system. This molar ratio remained unchanged, even in the presence of helper factors. Induction of influenza-specific CTL was antigen-dependent in both systems, even though some killing of noninfected target cells was also occasionally observed. Our results suggest that synthetic peptides can be recognized as antigenic determinants in the generation of H-2-restricted anti-viral CTL capable of killing appropriately infected target cells. The inability of peptide HA1(181-204) to generate sufficient help for CTL development suggests that certain regions of the HA can be recognized by CTL precursors, but not by all of the required helper cells. Peptide HA1(181-204) also reacted with three monoclonal anti-HA antibodies as well as mouse anti-influenza (A/Japan/305/57) immune sera. This antibody reactivity suggests the possibility of a shared antigenic epitope or region between T and B cells, and therefore provides new insight in our understanding of viral antigenicity.  相似文献   

20.
The phenotype of T cells that initiate graft-vs-host disease (GVHD) in response to minor histocompatibility antigens (minor HA) was determined in three H-2 compatible strain combinations by using negative selection with monoclonal antibodies to Lyt-2 and L3T4 antigens to test the hypothesis that Lyt-2-positive T cells alone initiate GVHD. The phenotype of T cells required to initiate GVHD was different in each of the three strain combinations studied. Both Lyt-2+ and L3T4+ LP spleen cells were necessary to cause lethal GVHD in C57BL/6 recipients. In the reciprocal transplant, Lyt-2+, but not L3T4+ C57BL/6 spleen cells were sufficient to initiate GVHD in LP recipients. In contrast, L3T4+, but not Lyt-2+ B10.D2 spleen cells were found to initiate GVHD in BALB/c recipients. The optimal response to minor HA requires both Lyt-2+ and L3T4+ T cells because a mixture of the two subsets of spleen cells resulted in a more severe form of GVHD than either subset alone in all three strain combinations studied. This study demonstrates that L3T4+ cells participate in the initiation of GVHD in response to minor HA. The dominant T cell subset that initiates GVHD varies with the specific strain combination tested. The specific minor HA expressed in the transplant recipient, the H-2 type, and possibly non-major histocompatibility complex immune response genes of the donor strain appear to determine the phenotype of the initiator T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号