首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver mitochondria accumulate iron mobilized from transferrin by pyrophosphate. The uptake has a very low energy dependence, but it is highly dependent on a functioning respiratory chain. Reduction of the ferric-iron-pyrophosphate complex is not linked to any specific respiratory complex. Half of the amount of iron accumulated is passed into heme. Iron once accumulated is very little accessible to chelation by added ferric or ferrous iron chelators. Iron uptake and heme synthesis are maximal if a suitable porphyrin substrate is added simultaneously with iron. The results represent further evidence that pyrophosphate is a possible candidate for intracellular iron transport. Also, the results suggest that iron uptake is coupled to simultaneous porphyrin uptake and heme synthesis.  相似文献   

2.
Turid Nilsen  Inge Romslo 《BBA》1984,766(1):233-239
Rat liver mitochondria accumulate iron mobilized from transferrin by pyrophosphate. The capacity of the mitochondria to accumulate iron is higher than the capacity of pyrophosphate to mobilize iron from transferrin: with ferric-iron-pyrophosphate as iron donor, iron uptake and heme synthesis are about 10-times that at corresponding concentrations of iron-transferrin plus pyrophosphate. Uptake of iron from ferric-iron-pyrophosphate depends on a functionary respiratory chain and involves reductive cleavage of the ferric-iron-pyrophosphate complex. Apotransferrin inhibits uptake of iron from ferric-iron-pyrophosphate by competing with the mitochondria for iron. The results focus on pyrophosphate as a possible candidate for intracellular iron transport.  相似文献   

3.
Isolated rat liver mitochondria accumulate iron from fully saturated transferrin at neutral pH. With 5 microM iron as diferric transferrin, accumulation at 30 degrees C amounts to approx. 40 pmol/mg protein per h. With access to a suitable porphyrin substrate, 70-80% of the amount of iron accumulated is recovered in heme. Mobilization of iron and synthesis of heme both depend on a functioning respiratory chain. Vacant iron-binding sites on mono- and apotransferrin compete with the mitochondria for iron mobilized from transferrin. Pyrophosphate at concentrations in the range 10-50 microM enhances mobilization of iron, counterbalances the inhibitory effect of mono- and apotransferrin and enhances metallochelatase activity. The results emphasize the putative suitability of pyrophosphate as an intracellular iron-transport ligand in situ.  相似文献   

4.
The import of metals, iron in particular, into mitochondria is poorly understood. Iron in mitochondria is required for the biosynthesis of heme and various iron-sulfur proteins. We have developed an in vitro assay to follow the uptake of iron into isolated yeast mitochondria. By measuring the incorporation of iron into porphyrin by ferrochelatase in the matrix, we were able to define the mechanism of iron import. Iron uptake is driven energetically by a membrane potential across the inner membrane but does not require ATP. Only reduced iron is functional in generating heme. Iron cannot be preloaded in the mitochondrial matrix but rather has to be transported across the inner membrane simultaneously with the synthesis of heme, suggesting that ferrochelatase receives iron directly from the inner membrane. Transport of iron is inhibited by manganese but not by zinc, nickel, and copper ions, explaining why in vivo these ions are not incorporated into porphyrin. The inner membrane proteins Mmt1p and Mmt2p proposed to be involved in mitochondrial iron movement are not required for the supply of ferrochelatase with iron. Iron transport can be reconstituted efficiently in a membrane potential-dependent fashion in proteoliposomes that were formed from a detergent extract of mitochondria. Our biochemical analysis of iron import into yeast mitochondria provides the basis for the identification of components involved in transport.  相似文献   

5.
The mechanism of iron uptake from several iron-containing compounds by transferrin-depleted rabbit reticulocytes and mouse spleen erythroid cells was investigated. Iron complexes of DL-penicillamine, citrate and six different aroyl hydrazones may be utilized by immature erythroid cells for hemoglobin synthesis, although less efficiently than iron from transferrin. HTF-14, a monoclonal antibody against human transferrin, reacts with rabbit transferrin and inhibits iron uptake and heme synthesis by rabbit reticulocytes. HTF-14 had no significant effect on iron uptake and heme synthesis when non-transferrin donors of iron were examined. Ammonium chloride (NH4Cl) increases intracellular pH and blocks the release or utilization of iron from the internalized transferrin. NH4Cl only slightly affected iron incorporation and heme synthesis from non-transferrin donors of iron. Hemin inhibited transferrin iron uptake and heme synthesis, but had a much lesser effect on iron incorporation and heme synthesis from non-transferrin donors of iron. These results allow us to conclude that transferrin-depleted reticulocytes take up iron from all of the examined non-transferrin iron donors without the involvement of the transferrin/transferrin receptor pathway.  相似文献   

6.
7.
Iron metabolism in K562 erythroleukemic cells   总被引:7,自引:0,他引:7  
Iron delivery to K562 cells is enhanced by desferrioxamine through induction of transferrin receptors. Experiments were performed to further characterize this event with respect to iron metabolism and heme synthesis. In control cells, up to 85% of the iron taken up from iron-transferrin was incorporated into ferritin, 7% into heme, and the remainder into compartments not yet identified. In cells grown with desferrioxamine, net accumulation of intracellular desferrioxamine (14-fold) was observed and iron incorporation into ferritin and heme was inhibited by 86% and 75%, respectively. In contrast, complete inhibition of heme synthesis in cells grown with succinylacetone had no effect on transferrin binding or iron uptake. Exogenous hemin (30 microM) inhibited transferrin binding and iron uptake by 70% and heme synthesis by 90%. These effects were already evident after 2 h. Thus, although heme production could be reduced by desferrioxamine, succinylacetone, and hemin, cell iron uptake was enhanced only by the intracellular iron chelator. The effects of exogenous heme are probably unphysiologic and the greater inhibition of iron flow into heme can be explained by effects on early steps of heme synthesis. We conclude that in this cell model a chelatable intracellular iron pool rather than heme synthesis mediates regulation of iron uptake.  相似文献   

8.
These studies assessed the fate and localization of incoming iron in 6-8-day rat reticulocytes during inhibition of heme synthesis by succinylacetone. Succinylacetone inhibition of heme synthesis increased iron uptake by increasing the rate of receptor recycling without affecting receptor KD for transferrin, transferrin uptake, or total receptor number. Its net effect was to amplify the number of surface transferrin receptors by recruitment of receptors from an intracellular pool. Despite increased iron influx in inhibited cells, only 2-4% of total incoming iron was diverted into ferritin. The majority of incoming iron (65-80%) in succinylacetone-inhibited cells was recovered in the stroma, where ultrastructural and enzymic analyses revealed it to be accumulated mainly in mitochondria. Intramitochondrial iron (70-75%) was localized mainly in the inner membrane fraction. Removal of succinylacetone restored heme synthesis, utilizing iron accumulated within mitochondria for its support. Thus, inhibition of heme synthesis in rat reticulocytes results in accumulation of incoming iron in a functional mobile intramitochondrial precursor iron pool used directly for heme synthesis. Under normal conditions, there is no significant intracellular or intramitochondrial iron pool in reticulocytes, which are therefore dependent upon continuous delivery of transferrin-bound iron to maintain heme synthesis. Ferritin plays an insignificant role in iron metabolism of reticulocytes.  相似文献   

9.
Three malignant hematopoietic cell lines were used in studies on cellular iron metabolism. Our results show that iron-carrying transferrin became bound to specific dimeric cell surface receptors. Iron accumulated within the cell with time, whereas intact transferrin was released back to the medium. Chloroquine and NH4Cl, known as pH-raising agents in vesicles of the lysosomal system, inhibited iron accumulation and transferrin binding in a dose-dependent manner. This suggests that the acid pH in endosomes leads to the cleavage of the iron-transferrin bonds. Transferrin degradation was not found, which leads us to suggest a process of ‘acid flushing’ for the dissociation of iron from transferrin without the involvement of endosome-lysosome fusion. Taken together, the data agree with the concept of receptor-mediated endocytosis, as described for many macromolecules. Iron was stored in ferritin in the cell types tested. Only a minor part (less than 15%) of the iron was bound in hemoglobin in the K-562 cell line. The relationship between iron stores and exogenously added iron in heme synthesis was investigated using a double labelling (55Fe/59Fe) technique. The results showed that exogenous iron was preferentially used before the iron stored in ferritin. The results are discussed in relation to various hypotheses on cellular iron uptake and transport.  相似文献   

10.
M L Freedman 《Blood cells》1987,13(1-2):227-235
Cells from aged animals show a decrease in heme synthesis, an increase in heme degradation, and a maintenance of heme concentration and heme-containing proteins. This raises the possibility that alternate sources of heme are utilized by the old animal to maintain intracellular heme necessary for initiation of protein synthesis. The mechanisms to balance heme and protein synthesis, and cytoplasmic and mitochondrial protein synthesis remain intact with advanced age. Iron remains available to the healthy organism in abundant amounts throughout the life span. The decrease in cellular iron utilization seen with age might conceivably result from availability of heme independent of heme synthesis, as intracellular heme controls the cellular uptake of iron from transferrin. Heme levels in aged cells seem to be maintained via an alternate heme source. The bone marrow in aged animals appears to function adequately as long as there is no stress. Anemia, therefore, should always be considered as a serious sign in illness and never as a normal concomitant of aging.  相似文献   

11.
Heme molecules play important roles in electron transfer by redox proteins such as cytochromes. In addition, a structural role for heme in protein folding and the assembly of enzymes has been suggested. Previous results obtained using Escherichia coli hemA mutants, which are unable to synthesize 5-aminolevulinic acid, a precursor of porphyrins and hemes, have demonstrated a requirement for heme biosynthesis in the assembly of a functional succinate-ubiquinone reductase (SQR or complex II), which is a component of the aerobic respiratory chain. In the present study, in order to investigate the role of the heme in the assembly of E. coli SQR, we used a hemH (encodes ferrochelatase) mutant that lacks the ability to insert iron into the porphyrin ring. The hemH mutant failed to insert functional SQR into the cytoplasmic membrane, and the catalytic portion of SQR [the flavoprotein subunit (Fp) and the iron-sulfur protein subunit (Ip)] was localized in the cytoplasm of the cell. It is of interest to note that protoporphyrin IX accumulated in the mutant cells and inactivated the cytoplasmic succinate dehydrogenase (SDH) activity associated with the catalytic Fp-Ip complex. In contrast, SQR was assembled into the membrane of a heme-permeable hemH double mutant when hemin was present in the culture. Only a low level of SQR activity was found in the membrane when hemin was replaced by non-iron metalloporphyrins: Mn-, Co-, Ni-, Zn- and Cu-protoporphyrin IX, or protoporphyrin IX These results indicate that heme iron is indispensable for the functional assembly of SQR in the cytoplasmic membrane of E. coli, and provide a new insight into the biological role of heme in the molecular assembly of the multi-subunit enzyme complex.  相似文献   

12.
Iron (Fe) and transferrin (TF) uptake by human peripheral blood lymphocytes stimulated in vitro with phytohemagglutinin was measured. Pulses of 59FeTF or 125I-TF were added to the cultures either at time 0 or 8 hr before the end of a 72-hr incubation. In time-course experiments, peak iron and transferrin uptake coincided with the peak of tritiated thymidine uptake taken as a measure of cellular activation. Iron, but not transferrin, was accumulated by the cells. Non-linear relationships existed between both iron and transferrin uptake and the degree of activation. Both rose markedly above basal levels only at a level of activation at least 50% of the maximum observed. The results suggest that although iron utilization is related to cellular activity, the uptake mechanism is only activated when an increased iron metabolism has exhausted internal stores.  相似文献   

13.
Thioether-ligated iron porphyrin (complex 1) was synthesized as a model of the protonated form of P450 to explore the possible involvement of the protonated form in the catalytic cycle, and ether-ligated iron porphyrin (complex 2) was also synthesized for comparison. The thioether and ether ligands enhanced heterolytic O-O bond cleavage of peroxy acid-iron porphyrin complex even in highly hydrophobic media without the assistance of acid or base, using mCPPAA as an oxidant. Competitive oxidation of cyclooctane/cyclooctene catalyzed by iron porphyrins showed that complexes 1 and 2 are less effective than heme thiolate (P450 and a synthetic heme thiolate (SR complex)) in oxidizing alkane. The possibility that thiol-ligated heme, which is a protonated form of heme thiolate, is not involved in the active intermediate structure of P450 is indicated by this result. This is the first report concerning the oxidizing ability of a thioether-ligated iron porphyrin.  相似文献   

14.
The Belgrade rat has a hypochromic, microcytic anemia inherited as an autosomal recessive mutation. Although transferrin binds normally to reticulocytes and internalizes normally, iron accumulation into cells and heme is much slower than normal. We have investigated the role of the transferrin cycle in this mutant by bypassing transferrin iron delivery with the iron chelate ferric salicylaldehyde isonicotinoyl hydrazone (Fe-SIH). Fe-SIH increases iron uptake into heme by Belgrade reticulocytes, restoring it almost to normal levels. This increase indicates that Fe-SIH delivers iron to a step in iron utilization that is after the Belgrade defect. Depleting reticulocytes of transferrin did not alter these observations. Failure to achieve above normal rates of iron incorporation could indicate damage due to chronic intracellular iron deficiency. Also, iron delivery by Fe-SIH restored globin synthesis to near-normal levels in Belgrade reticulocytes. The rates of glycine incorporation into porphyrin and heme in Belgrade reticulocytes incubated with Fe2-transferrin or Fe-SIH paralleled the rates of iron incorporation into heme. These data are consistent with the concept that iron availability limits protoporphyrin formation in rat reticulocytes. The protoporphyrin used for heme synthesis is provided by de novo synthesis and not by a pool of pre-existing protoporphyrin. The Belgrade defect occurs in the movement of iron from transferrin to a step prior to the ferrous state and insertion into heme. This defect diminishes the synthesis of heme and, consequently, that of protoporphyrin and globin.  相似文献   

15.
In many types of cells the synthesis of delta-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from our laboratory with reticulocytes suggest that the rate of iron uptake from transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels of Fe-Tf (20 microM). Furthermore, in induced Friend cells 100 microM Fe-SIH stimulated 2-14C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. In contrast, Fe-SIH, even when added in high concentrations, did not stimulate heme synthesis in uninduced Friend cells but was able to do so as early as 24 to 48 h following induction. In addition, contrary to previous results with rabbit reticulocytes, Fe-SIH also stimulated globin synthesis in induced Friend cells above the level seen with saturating concentrations of transferrin. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells.  相似文献   

16.
The absorption spectra of alkaline pyridine hemochrome of myeloperoxidase in its native, acid, and modified forms were similar to those of heme a, and the molar extinction coefficient of myeloperoxidase heme was very similar to that of heme a, assuming that myeloperoxidase contains only one heme. The anaerobic titration of myeloperoxidase with dithionite showed that one electron was consumed per molecule of the enzyme for its conversion to its reduced form. The EPR spectrum of myeloperoxidase indicated that the enzyme contains both high-spin heme and non-heme iron. Carbonyl reagents, such as borohydride, hydrazine, and benzhydrazide, reacted with myeloperoxidase, causing blue shifts in its absorption spectrum. The heme was labeled with a tritium of boro[3H]hydride, suggesting that the reagents reacted with a formyl group on the porphyrin ring of the myeloperoxidase heme. When hydrazine was added to cyanide complex I of myeloperoxidase the complex was converted to the hydrazine-enzyme compound. Myeloperoxidase reacted with bisulfite to form a compound with an absorption spectrum similar to that of cyanide complex I. Borohydride-treated myeloperoxidase formed only one cyanide complex, while the native enzyme formed two different cyanide complexes, I (Kd = 0.3 muM) and II (approximate Kd = 0.1 mM). The EPR spectrum indicated that cyanide complex I of myeloperoxidase still contained high-spin heme. The results suggested that cyanide complex I and the bisulfite compound of myeloperoxidase were adducts between the nucleophilic reagents and the formyl group of myeloperoxidase heme. Based on these results, we concluded that one of the two iron atoms in a myeloperoxidase molecule exists in a formyl-heme moiety similar to heme a and the other exists as a non-heme iron.  相似文献   

17.
Intracellular ferritin in newt (Triturus cristatus) erythroblasts was accessible to the chelating effects of EDTA and pyridoxal phosphate. EDTA (0.5-1 mM) promoted release of radioactive iron from ferritin of pulse-labelled erythroblasts during chase incubation, but its continuous presence was not necessary for ferritin iron mobilization. Brief exposure to EDTA was sufficient to release 60-70% of ferritin 59Fe content during ensuing chase in EDTA-free medium. EDTA also suppressed cellular iron uptake and utilization for heme synthesis, but these activities were restored upon its removal. Pyridoxal-5'-phosphate (0.5-5 mM) also stimulated loss of radioactive iron from ferritin; however, ferritin iron release by pyridoxal phosphate required its continued presence. Unlike EDTA, pyridoxal phosphate did not interfere with iron uptake or its utilization for heme synthesis. Chelator-mobilized ferritin iron accumulated initially in the hemolysate as a low-molecular-weight component and appeared to be eventually released into the medium. No radioactive ferritin was found in the medium of chelator-treated cells, indicating that secretion or loss of ferritin was not responsible for decreasing cellular ferritin 59Fe content. Moreover, there was no transfer of radioactive iron between the low-molecular-weight component released into the medium and plasma transferrin. These results indicate that chelator-released ferritin iron is not available for cellular utilization in heme synthesis and that ferritin iron released by this process is not an alternative or complementary iron source for heme synthesis. Correlation of these data with effects of succinylacetone inhibition of heme synthesis and with previous studies indicates that the main role of erythroid cell ferritin is absorption and storage of excess iron not used for heme synthesis.  相似文献   

18.
Heme is the most bioavailable form of dietary iron and a component of many cellular proteins. Controversy exists as to whether heme uptake occurs via specific transport mechanisms or passive diffusion. The aims of this study were to quantify cellular heme uptake with a fluorescent heme analog and to determine whether heme uptake is mediated by a heme transporter in intestinal and hepatic cell lines. A zinc-substituted porphyrin, zinc mesoporphyrin (ZnMP), was validated as a heme homolog in uptake studies of intestinal (Caco-2, I-407) and hepatic (HepG2) cell lines. Uptake experiments to determine time dependence, heme inhibition, concentration dependence, temperature dependence, and response to the heme synthesis inhibitor succinylacetone were performed. Fluorescence microscope images were used to quantify uptake and determine the cellular localization of ZnMP; ZnMP uptake was seen in intestinal and hepatic cell lines, with cytoplasmic uptake and nuclear sparing. Uptake was dose- and temperature dependent, inhibited by heme competition, and saturated over time. Preincubation with succinylacetone augmented uptake, with an increased initial uptake rate. These findings establish a new method for quantifying heme uptake in individual cells and provide strong evidence that this uptake is a regulated, carrier-mediated process.  相似文献   

19.
Uptake of iron by a mammalian epithelial cell line (CNCM I-221) was shown to be dependent on the nature of the iron complex. Iron uptake was demonstrated by cytochemical staining and determination of redox-reactive iron in cell lysates. Three classes of ligands were investigated: (i) low molecular weight hydrophilic compounds, represented by ethylenediamine-tetraacetic acid (EDTA) and other charged ligands such as adenosine phosphates (ATP, ADP, AMP) and diethylenetriaminepentaacetic acid (DTPA), (2) low-molecular weight lipophilic ligands such as 8-hydroxyquinoline (8-HQ) and (3) a high molecular mass ligand, dextran. Iron complexed to 8-HQ accumulated intracellularly, the uptake rate of iron being 4.16 fmoles cell-1 h-1 of exposure at 37 degrees C or 3.86 fmoles cell-1 h-1 at 4 degrees C. Iron-dextran was endocytosed and retained in phagosomes. The uptake rate of iron following exposure to iron dextrans was found to be 5.6 fmoles cell-1 h-1 of exposure at 37 degrees C. In contrast to iron/8-HQ, uptake of iron dextran by cells was inhibited at 4 degrees C. Iron complexed to low molecular weight hydrophilic ligands was not taken up by cells. Cytotoxicity was measured by reduction of plating efficiency or tritiated thymidine incorporation. These tests showed that toxic effects of added iron were demonstrable only in cells exposed to the complex with 8-HQ.  相似文献   

20.
Shigella species can use heme as the sole source of iron. In this work, the heme utilization locus of Shigella dysenteriae was cloned and characterized. A cosmid bank of S. dysenteriae serotype 1 DNA was constructed in an Escherichia coli siderophore synthesis mutant incapable of heme transport. A recombinant clone, pSHU12, carrying the heme utilization system of S. dysenteriae was isolated by screening on iron-poor medium supplemented with hemin. Transposon insertional mutagenesis and subcloning identified the region of DNA in pSHU12 responsible for the phenotype of heme utilization. Minicell analysis indicated that a 70-kDa protein encoded by this region was sufficient to allow heme utilization in E. coli. Synthesis of this protein, designated Shu (Shigella heme uptake), was induced by iron limitation. The 70-kDa protein is located in the outer membrane and binds heme, suggesting it is the S. dysenteriae heme receptor. Heme iron uptake was found to be TonB dependent in E. coli. Transformation of an E. coli hemA mutant with the heme utilization subclone, pSHU262, showed that heme could serve as a source of porphyrin as well as iron, indicating that the entire heme molecule is transported into the bacterial cell. DNA sequences homologous to shu were detected in strains of S. dysenteriae serotype 1 and E. coli O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号