首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Eyeing endothelins: A cellular perspective   总被引:6,自引:0,他引:6  
Endothelin is an endogenous vasoactive peptide that is considered among the most potent vasoconstrictor substances known. In addition to its vascular effects, endothelins and their receptors have been shown to be present in the eye and to have a number of ocular actions that may be important for ocular homeostasis, but, in excess can be a potential contributor to ocular neuropathy in glaucoma. The current review focuses on the cellular and molecular aspects of endothelins and its receptors in the eye with an emphasis on its relationship to ocular function and its potential role in the etiology of glaucoma pathophysiology.  相似文献   

2.
Endothelins are a family of three peptides of 21 amino acids with strong vasoconstrictor effects. The three peptides are encoded by three different genes and derived from precursors (" big endothelins") which are cleaved by metalloproteases, named endothelin-converting enzyme. Two receptors have been cloned, ET-A and ET-B which bind the three endothelins with various affinities. The diverse expression pattern of the endothelin system (ET) components is associated with a complex pharmacology and its counteracting physiological actions. New modulators of the ET system have been described : retinoic acid, leptin, prostaglandins, hypoxia. Endothelins can be considered as regulators working in paracrine and autocrine fashion in a variety of organs in different cellular types. The ET system has beneficial and detrimental roles in mammals. The different components have been shown to be essential for a normal embryonic and neonatal development, for renal homeostasis and maintenance of basal vascular tone. They are involved in physiological and tumoral angiogenesis. They affect the physiology and pathophysiology of the liver, muscle, skin, adipose tissue and reproductive tract. The endothelin system participates in the development of atherosclerosis as well as pulmonary hypertension, and mediates cardiac remodeling in heart failure. Elaboration of new animal models (knock-out, pathophysiological models em leader ) will allow the clear genetic dissection of physiological and pathophysiological roles of the endothelin system.  相似文献   

3.
Eicosanoids in cirrhosis and portal hypertension   总被引:2,自引:0,他引:2  
In the last decade, the knowledge of the pathogenesis of portal hypertension and cirrhosis has increased dramatically. In portal hypertension, almost all the known vasoactive systems/substances are activated or increased and the most recent studies have stressed the importance of the endothelial factors, in particular, prostaglandins. Prostaglandins are formed following the oxygenation of arachidonic acid by the cyclooxygenase (Cox) pathway. An important consideration in portal hypertension and cirrhosis in the periphery is the altered hemodynamic profile and its contributory role in controlling endothelial release of these vasoactive substances. Prostaglandins are released from the endothelium in response to both humoral and mechanical stimuli and can profoundly affect both intrahepatic and peripheral vascular resistance. Within the liver, intrahepatic resistance is altered due to a diminution in sinusoidal responsiveness to vasodilators and an increase in prostanoid vasoconstrictor responsiveness. This review will examine the contributory role of both hormonal and/or hemodynamic force-induced changes in prostaglandin production and signaling in cirrhosis and portal hypertension and the consequence of these changes on the structural and functional response of both the vasculature and the liver.  相似文献   

4.
The vascular endothelium is an important regulator of vascular reactivity and preserves the balance between vasoconstrictor and vasodilator tone during normal physiologic conditions. Example endothelial-derived vasoconstrictors include endothelin-1 and thromboxane A2; example vasodilators include nitric oxide and prostacyclin. A growing body of evidence points to the existence of a non-nitric oxide, non-prostacyclin endothelium-derived vasodilatory factor of currently unclear identity, often referred to as endothelium-derived hyperpolarizing factor (EDHF). Recent research testifies to the significance of EDHF in endothelium-dependent vascular smooth muscle relaxation. Special emphasis has been placed on the role of small conductance calcium-activated potassium channels (SK) in facilitating the endothelial and vascular responses to EDHF across the microcirculation, including coronary, mesenteric, and pulmonary vascular beds. Meanwhile, decreased activity of endothelial SK channel activity has been implicated in the pathology of a variety of disease states that alter the balance between vasodilator and vasoconstrictor tone. Hence the primary goal of this review is to characterize the physiology of endothelial SK channels in the microvasculature under normal and pathological conditions. Themes of regulation and dysregulation of SK channel activity through the action of protein kinases, reactive oxygen species, and byproducts of intermediary metabolism provide unifying principles to tie together vascular pathology in altered metabolic states ranging from hypertension to diabetes, to ischemia-reperfusion. A comprehensive understanding of SK channel pathophysiology may provide a foundation for development of new therapeutics targeting SK channels, particularly SK channel potentiators, that may have widespread application for many chronic disease states.  相似文献   

5.
The endothelins (ETs) comprise a family of 21 amino acid peptides, ET-1, ET-2 and ET-3, first demonstrated as products of vascular endothelium. Subsequent work showed that they are also found in non-endothelial cells from a variety of tissues such as breast, parathyroid and adrenal gland. At first, the ETs were recognized for their pressor effects. However, ET administration in vivo initially caused hypotension at low concentrations by triggering the paracrine release of endothelial-derived vasodilators. The ETs exert powerful contractile actions on myometrium and other types of smooth muscle and are mitogenic, or co-mitogenic for fibroblasts, vascular smooth muscle and other cells. Demonstration of extravascular ET in endometrium has revealed a powerful vasoconstrictor which might act on the spiral arterioles to effect a powerful and sustained contraction of vascular smooth muscle. ETs might also contribute to the process of endometrial repair. In addition, the ETs appear to play a fundamental role in the control of uterine function in pregnancy. Effects on myometrial contractility have been implicated in the mechanisms governing the onset of normal and pre-term labour, and the peptides are likely to be key determinants of placental blood flow by binding to vascular smooth muscle receptors in the placenta.  相似文献   

6.
7.
Endothelins and the lung   总被引:6,自引:0,他引:6  
Since endothelins were discovered by Yanasigawa in 1988 it has been recognised that they may have an important role in lung pathophysiology. Despite their biological importance as vasoconstrictors the physiological role of endothelin has not yet been defined within the lungs. This review explores their role in acute and chronic disease. During acute inflammation and ischaemia-reperfusion injury cytokines may induce release of endothelin. This is important in the realm of acute lung injury and during surgical procedures such as cardiopulmonary operations including lung resections and transplantation. Complications of surgery including primary organ failure resulting in poor gas exchange as well as increased pulmonary vascular resistance have been linked to the presence of excessive endothelin. Endothelin may have an important role in transplantation biology. The complex process leading to successful lung transplantation includes optimising the donor with brain death, harvesting the lungs, managing acute and chronic rejection, and protecting the vital organs from toxic effects of immunosuppressants. During chronic disease processes, the mitotic action of endothelin may be important in vascular and airway remodelling by means of smooth muscle cell proliferation. We also explore recent advances in drug development, animal models and future directions for research.  相似文献   

8.
Historically, the vasodilatory prostanoids, especially prostacyclin and prostaglandin E(2), are believed to contribute significantly to the regulation of normal vascular tone and blood pressure (BP), primarily by counteracting the prevailing effects of the systemic vasoconstrictor systems, including angiotensin II, the catecholamines, and vasopressin. In contrast, the primary vasoconstrictor prostanoid thromboxane A(2) (TxA(2)) is produced in far smaller quantities in the normal state. While TxA(2) is believed to play a significant role in a variety of cardiovascular diseases, such as myocardial infarction, cerebral vasospasm, hypertension, preeclampsia, and various thrombotic disorders, its role in the regulation of vascular tone and BP in the normal physiological state is, at best, uncertain. Numerous studies have firmly established the dogma that TxA(2), while important in pathophysiological states in males, plays little or no role in the regulation of vascular tone or BP in females, except in the pulmonary vasculature. However, this concept is largely based on the predominant and preferential use of males in animal and human studies. Recent studies from our laboratory and others challenge this dogma and reveal that the TxA(2) pathway in the systemic vascular wall is an estrogen-dependent mechanism that appears to play an important role in the regulation of vascular tone and BP in females, in both normal and pathophysiological states. It is proposed that the potent vasoconstrictor action of TxA(2) is beneficial in the female in the normal state by acting as a local counterregulatory mechanism to increase vascular tone and BP and defend against hypotension that could result from the multiple estrogen-sensitive local vasodilator mechanisms present in the female vascular wall. Validation of this proposal must await further studies at the systemic, tissue, and molecular levels.  相似文献   

9.
The endothelins (ETs), sarafotoxins (SRTXs), vasoactive intestinal contractor (VIC), and bibrotoxin are a family of potent vasoconstrictor peptides. All peptides in this family possess 21 amino acids arranged in a unique bicyclic motif formed between cystine bridges in the 1–15 and 3–11 positions. Since the discovery of endothelin-1 (ET-1) in 1988, significant effort has been focused on the understanding of its structure–activity relationships. The identification of endothelin receptor subtypes has led to the discovery/design of potent peptide agonists and antagonists, along with nonpeptide antagonists of endothelin with varying levels of potency and receptor subtype selectivity. In keeping with the theme of this journal, this review will focus only on the development of peptidic-based agonists and antagonists of endothelin in addition to their applications in understanding the physiological and/or pathophysiological role of endothelin and its isopeptides. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Recent studies have shown that adiponectin is able to increase nitric oxide (NO) production by the endothelium and relax preconstricted isolated aortic rings, suggesting that adiponectin may act as a vasodilator. Endothelin-1 (ET-1) is a potent vasoconstrictor, elevated levels of which are associated with obesity, type 2 diabetes, hypertension, and cardiovascular disease. We hypothesized that adiponectin has NO-dependent vascular actions opposing the vasoconstrictor actions of ET-1. We studied the vascular and metabolic effects of a physiological concentration of adiponectin (6.5 μg/ml) on hooded Wistar rats in the constant-flow pump-perfused rat hindlimb. Adiponectin alone had no observable vascular activity; however, adiponectin pretreatment and coinfusion inhibited the increase in perfusion pressure and associated metabolic stimulation caused by low-dose (1 nM) ET-1. Adiponectin was not able to oppose vasoconstriction when infusion was commenced after ET-1. This is in contrast to the NO donor sodium nitroprusside, which significantly reduced the pressure due to established ET-1 vasoconstriction, suggesting dissociation of the actions of adiponectin and NO. In addition, adiponectin had no effect on vasoconstriction caused by either high-dose (20 nM) ET-1 or low-dose (50 nM) norepinephrine. Our findings suggest that adiponectin has specific, apparently NO-independent, vascular activity to oppose the vasoconstrictor effects of ET-1. The hemodynamic actions of adiponectin may be an important aspect of its insulin-sensitizing ability by regulating access of insulin and glucose to myocytes. Imbalance in the relationship between adiponectin and ET-1 in obesity may contribute to the development of insulin resistance and cardiovascular disease.  相似文献   

11.
Vascular endothelium plays a key role in the local regulation of vascular tone and vascular architecture by release of vasodilator and vasoconstrictor substances, as well as factors with pro-coagulant, anticoagulant, fibrinolytic, antibacterial properties, growth factors, chemokines, free radicals, etc. Release of endothelium-derived relaxing factors such as nitric oxide (NO), prostaglandins and endothelium-derived hyperpolarizing factor, as well as vasoconstricting factors such as endothelin, superoxide and thromboxanes play an influential role in the maintenance and regulation of vascular tone and the corresponding peripheral vascular resistance. Under physiological conditions, the release of anticoagulant and smooth muscle relaxing factors exceeds the release of other substances. The first part of this review presents the functions of the endothelium itself, the nature of the endothelium-derived relaxing factor, its production by NO synthases, mechanisms of its action via activation of soluble guanylyl cyclase and production of cyclic 3'-5'-guanosine monophosphate. The resulting biological effects include vasodilatation, regulation of vessel wall structure, increased regional blood perfusion, lowering of systemic blood pressure, antithrombosis and antiatherosclerosis effects, which counteract the vascular actions of endogenous vasoconstrictor substances. Impaired endothelial function, either as a consequence of reduced production/release or increased inactivation of endothelium-derived vasodilators, as well as interactions of NO with angiotensin, reactive oxygen species and oxidized lipoproteins, has detrimental functional consequences and is one of the most important cardiovascular risk factors. Therefore the second part of this review assesses the pathophysiologic impact of the endothelium in examples of cardiovascular pathologies, e.g. endotheliopathies caused by increased angiotensin production, lipid peroxidation, ischemia/reperfusion or diabetes.  相似文献   

12.
The CNS lesion scar: new vistas on an old regeneration barrier   总被引:2,自引:0,他引:2  
The endothelins (ETs) are regulatory peptides, distributed in many organ systems and with potent physiological effects. ETs represent the most powerful vasoconstrictive substances known today. They also act as growth factors and seem to be involved in fetal development. Much data support a pathophysiological role for ETs, especially in diseases of the vascular system, such as hypertension, preeclampsia, ischemic heart disease, subarachnoidal haemorrhage, and cerebral ischemia. The development of drugs affecting ET-receptors and the biosynthesis of ETs presently attract great interest for the establishment of new treatments of diseases in which ETs are involved. Hopefully, the elaboration of more specific ET-receptor ligands will fulfill some of these expectations.  相似文献   

13.
14.
Prolonged exposure to alveolar hypoxia induces physiological changes in the pulmonary vasculature that result in the development of pulmonary hypertension. A hallmark of hypoxic pulmonary hypertension is an increase in vasomotor tone. In vivo, pulmonary arterial smooth muscle cell contraction is influenced by vasoconstrictor and vasodilator factors secreted from the endothelium, lung parenchyma and in the circulation. During chronic hypoxia, production of vasoconstrictors such as endothelin-1 and angiotensin II is enhanced locally in the lung, while synthesis of vasodilators may be reduced. Altered reactivity to these vasoactive agonists is another physiological consequence of chronic exposure to hypoxia. Enhanced contraction in response to endothelin-1 and angiotensin II, as well as depressed vasodilation in response to endothelium-derived vasodilators, has been documented in models of hypoxic pulmonary hypertension. Chronic hypoxia may also have direct effects on pulmonary vascular smooth muscle cells, modulating receptor population, ion channel activity or signal transduction pathways. Following prolonged hypoxic exposure, pulmonary vascular smooth muscle exhibits alterations in K+ current, membrane depolarization, elevation in resting cytosolic calcium and changes in signal transduction pathways. These changes in the electrophysiological parameters of pulmonary vascular smooth muscle cells are likely associated with an increase in basal tone. Thus, hypoxia-induced modifications in pulmonary arterial myocyte function, changes in synthesis of vasoactive factors and altered vasoresponsiveness to these agents may shift the environment in the lung to one of contraction instead of relaxation, resulting in increased pulmonary vascular resistance and elevated pulmonary arterial pressure.  相似文献   

15.
The small GTP-binding protein Rho and its downstream effector, Rho-kinase, are important regulators of vasoconstrictor tone. Rho-kinase is upregulated in experimental models of pulmonary hypertension, and Rho-kinase inhibitors decrease pulmonary arterial pressure in rodents with monocrotaline and chronic hypoxia-induced pulmonary hypertension. However, less is known about responses to fasudil when pulmonary vascular resistance is elevated on an acute basis by vasoconstrictor agents and ventilatory hypoxia. In the present study, intravenous injections of fasudil reversed pulmonary hypertensive responses to intravenous infusion of the thromboxane receptor agonist, U-46619 and ventilation with a 10% O(2) gas mixture and inhibited pulmonary vasoconstrictor responses to intravenous injections of angiotensin II, BAY K 8644, and U-46619 without prior exposure to agonists, which can upregulate Rho-kinase activity. The calcium channel blocker isradipine and fasudil had similar effects and in small doses had additive effects in blunting vasoconstrictor responses, suggesting parallel and series mechanisms in the lung. When pulmonary vascular resistance was increased with U-46619, fasudil produced similar decreases in pulmonary and systemic arterial pressure, whereas isradipine produced greater decreases in systemic arterial pressure. The hypoxic pressor response was enhanced by 5-10 mg/kg iv nitro-L-arginine methyl ester (L-NAME), and fasudil or isradipine reversed the pulmonary hypertensive response to hypoxia in control and in L-NAME-treated animals, suggesting that the response is mediated by Rho-kinase and L-type Ca(2+) channels. These results suggest that Rho-kinase is constitutively active in regulating baseline tone and vasoconstrictor responses in the lung under physiological conditions and that Rho-kinase inhibition attenuates pulmonary vasoconstrictor responses to agents that act by different mechanisms without prior exposure to the agonist.  相似文献   

16.
An increase in fetoplacental vascular resistance caused by hypoxia is considered one of the key factors of placental hypoperfusion and fetal undernutrition leading to intrauterine growth restriction (IUGR), one of the serious problems in current neonatology. However, although acute hypoxia has been shown to cause fetoplacental vasoconstriction, the effects of more sustained hypoxic exposure are unknown. This study was designed to test the hypothesis that chronic hypoxia elicits elevations in fetoplacental resistance, that this effect is not completely reversible by acute reoxygenation, and that it is accompanied by increased acute vasoconstrictor reactivity of the fetoplacental vasculature. We measured fetoplacental vascular resistance as well as acute vasoconstrictor reactivity in isolated perfused placentae from rats exposed to hypoxia (10% O(2)) during the last week of a 3-wk pregnancy. We found that chronic hypoxia shifted the relationship between perfusion pressure and flow rate toward higher pressure values (by approximately 20%). This increased vascular resistance was refractory to a high dose of sodium nitroprusside, implying the involvement of other factors than increased vascular tone. Chronic hypoxia also increased vasoconstrictor responses to angiotensin II (by approximately 75%) and to acute hypoxic challenges (by >150%). We conclude that chronic prenatal hypoxia causes a sustained elevation of fetoplacental vascular resistance and vasoconstrictor reactivity that are likely to produce placental hypoperfusion and fetal undernutrition in vivo.  相似文献   

17.
Diabetic nephropathy is associated with high morbidity and mortality and the prevalence of this disease is continuously increasing world wide. Though, the major risk factors like hyperglycemia and hypertension play a pivotal role in the pathogenesis of diabetic nephropathy, the etiology of this insidious disorder is not well understood. Mast cells are pluripotent bone marrow derived cells that play a key role in inflammation. Degranulation of mast cells releases various mediators including inflammatory cytokines, endothelins, growth factors, and proteolytic enzymes. Infiltration of mast cells has been noted to occur in renal diseases. In addition, the renal density of mast cells is significantly increased in diabetic patients with nephropathy. It remains unclear whether resident renal mast cells derived mediators play a role in the pathogenesis of diabetic nephropathy. Recent studies suggest the involvement of renal mast cell infiltration and degranulation in diabetic nephropathy. The present review focuses on the role of resident renal mast cells in diabetic nephropathy.  相似文献   

18.
Pulmonary vessel constriction results from an imbalance between vasodilator and vasoconstrictor factors released by the endothelium including nitric oxide, endothelin, prostanoids, and reactive oxygen species (ROS). ROS, generated by a variety of enzymatic sources (such as mitochondria and NADPH oxidases, a.k.a. Nox), appear to play a pivotal role in vascular homeostasis, whereas elevated levels effect vascular disease. The pulmonary circulation is very sensitive to changes in the partial pressure of oxygen and differs from the systemic circulation in its response to this change. In fact, the pulmonary vessels contract in response to low oxygen tension, whereas systemic vessels dilate. Growing evidence suggests that ROS production and ROS-related pathways may be key factors that underlie this differential response to oxygen tension. A major emphasis of our laboratory is the role of Nox isozymes in cardiovascular disease. In this review, we will focus our attention on the role of Nox-derived ROS in the control of pulmonary vascular tone.  相似文献   

19.
Prostaglandins are part of the family of oxygenated metabolites of arachidonic acid known collectively as eicosanoids. While they are formed, act, and are inactivated locally and rarely circulate in plasma, they can affect blood flow in some tissues and so might contribute to the control of peripheral vascular resistance. Few studies have shown any derangement of total body prostaglandin synthesis or metabolism in hypertension, but increased renal synthesis of one prostanoid, thromboxane A2, has been noted in spontaneously hypertensive rats and some hypertensive humans. This potent vasoconstrictor may account for the increased renal vascular resistance and suppressed plasma renin activity seen in many patients with hypertension. Increased renal vascular resistance could increase the blood pressure directly as a component of total peripheral resistance or indirectly by increasing glomerular filtration fraction and tubular sodium reabsorption. Specific thromboxane synthesis inhibitors not only decrease renal thromboxane production but also increase renal vasodilator prostaglandin synthesis when prostaglandin synthesis is stimulated. This redirection of renal prostaglandin synthesis toward prostacyclin might be of benefit in correcting a fundamental renal defect in patients with hypertension.  相似文献   

20.
Arima S 《Steroids》2006,71(4):281-285
Recent studies provide evidence that aldosterone (Aldo) accelerates hypertension, proteinuria and glomerulosclerosis in animal models of chronic renal failure. Although the underlying mechanisms are not well defined, Aldo may exert these deleterious renal effects by elevating renal vascular resistance (RVR) and glomerular capillary pressure (P(GC)). To test this possibility, we studied the action of Aldo on rabbit afferent (Af-) and efferent arterioles (Ef-Arts), crucial vascular segments to the control of glomerular hemodynamics. Aldo caused rapid (within 5 min) constriction in both arterioles. The constriction was not affected by spironolactone but was reproduced by membrane-impermeable albumin-conjugated Aldo, suggesting that vasoconstrictor actions are non-genomic. This notion was further supported by the finding that neither actinomycin D nor cycloheximide had effect. The vasoconstrictor action of Aldo on Af-Arts was inhibited by nifedipine (L-type calcium channel blocker), whereas that on Ef-Arts was inhibited by efonidipine (both L- and T-type calcium channel blocker) but not nifedipine. Disrupting the endothelium or nitric oxide (NO) synthesis inhibition augmented the vasoconstriction in Af-Arts, demonstrating that endothelium-derived NO modulates the vasoconstrictor actions of Aldo. Thus, Aldo causes non-genomic vasoconstriction via calcium mobilization thorough L- or T-type calcium channels in Af- or Ef-Arts, respectively. These vasoconstrictor actions on the glomerular microcirculation may play an important role in the pathophysiology and progression of renal diseases by elevating RVR and P(GC), especially when endothelium functions are impaired. In addition to our study, this review describes recent findings on the rapid cardiovascular actions of Aldo, with a particular attention to the renal hemodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号