首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The structures of intestinal and liver fatty acid binding proteins (FABPs) have been determined from an analysis of the nucleotide sequences of cloned cDNAs. The primary translation product of intestinal FABP mRNA contains 132 residues (Mr = 15 124). Liver FABP mRNA encodes a 127 amino acid polypeptide (Mr = 14 273). In vitro co-translational cleavage and translocation assays showed that neither sequence has a cleavable signal peptide or signal peptide equivalent - suggesting that the FABPs do not enter the secretory apparatus but rather are targeted to the cytoplasm. A variety of computational techniques were used to compare the two FABP sequences. The results indicate that liver and intestinal FABP are paralogous homologues. A superfamily of proteins was defined which includes the FABPs, the cellular retinol and retinoic acid binding proteins, the P2 protein of peripheral nerve myelin, and a polypeptide known as 422 whose synthesis is induced during differentiation of 3T3-L1 cells to adipocytes. No sequence homologies were noted between any of these small molecular weight cytosolic proteins and nonspecific lipid transfer protein (sterol carrier protein 2), phosphatidylcholine transfer protein, serum albumin or apolipoprotein AI. The FABPs may have structural features responsible for lipid-protein interactions that are not present in these non-homologous sequences. The distribution of intestinal and liver FABP mRNAs in adult rat tissues and the changes in FABP gene expression which occur during gastrointestinal development support the notion that these proteins are involved in fatty acid uptake, transport and/or compartmentalization. However, differences in tissue distribution and periods of non-coordinate expression during gastrointestinal ontogeny suggest that the two FABPs have distinct functions. The relationship between intestinal and liver FABPs and similar sized cytosolic FABPs isolated from brain, skeletal and cardiac muscle remains unclear. Recombinant DNA techniques combined with comparative sequence analyses offer a useful approach for defining unique as well as general structure-function relationships in this group of fatty acid binding proteins.  相似文献   

2.
We have examined the tissue distribution and developmental regulation of two low molecular weight cytosolic fatty acid binding proteins. Based on their initial site of isolation, they have been referred to as liver and intestinal fatty acid binding proteins (FABP). Cloned cDNAs were used to probe blots of RNAs extracted from a wide variety of adult rat tissues as well as small intestine and liver RNA obtained from fetal, suckling, and weaning animals. The highest concentrations of "liver" FABP mRNA were found in small intestine and liver. "Intestinal" FABP mRNA is most abundant in small bowel RNA while only trace amounts were encountered in liver. Both mRNAs were detectable in stomach, colon, pancreas, spleen, lung, heart, testes, adrenal, and brain RNA at 1-8% the concentrations observed in small intestine. Accumulation of both mRNAs in the small intestinal epithelium increases during development. The mRNAs are first detectable between the 19th and 21st day of gestation. They undergo a coordinated 3-4-fold increase in concentration within the first 24 h after birth. Thereafter, gut levels of intestinal FABP mRNA remain constant during the suckling period while liver FABP mRNA increases an additional 2-fold. Liver FABP mRNA levels are also induced in hepatocytes during the first postnatal day but subsequently do not change during the suckling and weaning phase, despite marked alterations in hepatic fatty acid metabolism. These observations support the concept that the major role of these proteins is to facilitate the entry of lipids into cells and/or their subsequent intracellular transport and compartmentalization. The data also raise questions about the identity of extragastrointestinal FABPs.  相似文献   

3.
Fatty acid-binding proteins (FABP) are abundant cytosolic proteins whose level is responsive to nutritional, endocrine, and a variety of pathological states. Although FABPs have been investigatedin vitro for several decades, little is known of their physiological function. Liver L-FABP binds both fatty acids and cholesterol. Competitive binding analysis and molecular modeling studies of L-FABP indicate the presence of two ligand binding pockets that accomodate one fatty acid each. One fatty acid binding site is identical to the cholesterol binding site. To test whether these observations obtainedin vitro were physiologically relevant, the cDNA encoding L-FABP was transfected into L-cells, a cell line with very low endogenous FABP and sterol carrier proteins. Uptake of both ligands did not differ between control cells and low expression clones. In contrast, both fatty acid uptake and cholesterol uptake were stimulated in the high expression cells. In high expression cells, uptake of fluorescent cis-parinaric acid was enhanced more than that of trans-parinaric acid. This is consistent with the preferential binding of cis-fatty acids to L-FABP but in contrast to the preferential binding of trans-parinaric acid to the L-cell plasma membrane fatty acid transporter (PMFABP). These data show that the level of cytosolic fatty acids in intact cells can regulate both the extent and specificity of fatty acid uptake. Last, sphingomyelinase treatment of L-cells released cholesterol from the plasma membrane to the cytoplasm and stimulated microsomal acyl-CoA: cholesteryl acyl transferase (ACAT). This process was accelerated in high expression cells. These observations show for the first time in intact cells that L-FABP, a protein most prevalent in liver and intestine where much fat absorption takes place, may have a role in fatty acid and cholesterol absorption.Abbreviations FABP fatty acid-binding protein - L-FABP liver fatty acid-binding protein - I-FABP intestinal fatty acid-binding protein - H-FABP heart fatty acid-binding protein - A-FABP adipocyte fatty acid-binding protein - PMFABP plasma membrane fatty acid-binding protein - SCP-2 sterol carrier protein-2 - Dehydroergosterol (DHE) d-5,7,9(11),22-ergostatetraene-3b-ol - cis-parinaric acid-9Z, 11E, 13E, 15Z-octatetraenoic acid - trans parinaric acid, 9E, 11E, 13E, 14E-octatetraenoic acid - BSA bovine serum albumin - KRH Krebs-Ringer-Henseleit buffer  相似文献   

4.
Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.  相似文献   

5.
Dietary and nutritional aspects of fatty acid binding proteins   总被引:1,自引:0,他引:1  
Information on cytosolic fatty acid binding proteins (FABP) related to dietary and pharmacological manipulations is discussed in terms of FABP function. FABP present in liver, heart, intestinal mucosa and omental fat responds to different diets. A parallel change occurs in tissue levels of FABP and metabolism of fatty acids. It seems FABP might play a role in lipid metabolism by interacting with membrane bound enzymes. The available data also support the argument in favor of FABP involvement in intracellular transport, compartmentalization and channeling of fatty acids.  相似文献   

6.
Function and regulation of hepatic and intestinal fatty acid binding proteins   总被引:10,自引:0,他引:10  
Two structurally different fatty acid binding proteins (FABP) have been isolated from rat liver and small intestinal epithelium. hFABP is a 14 184 Da protein found in abundance in both liver and small intestine, whereas gFABP (15 063 Da) is abundantly present only in small intestine. This review discusses studies which have provided insight into the physiological functions of these proteins. These include analyses of endogenous and exogenous ligand binding to FABP in vitro; examination of the modulating effect of FABP preparations on enzyme activities in vitro; exploration of relationships between alterations in cytosolic FABP content in response to hormonal, pharmacological, and dietary manipulations and changes in the rates of cellular fatty acid uptake and utilization; and studies of hFABP turnover and the mechanisms of FABP regulation. These experiments provide compelling evidence for a broad role of the FABPs in the transport, utilization and cellular economy of free fatty acids in the liver and small intestine, and also in protecting several aspects of cellular function against the modulatory effects of fatty acids, fatty acyl-CoA esters, and other ligands. Studies of FABP regulation also suggest a role in long-term rather than short-term modulation of hepatic fatty acid metabolism and indicate that hFABP and gFABP may perform different functions in the small intestine.  相似文献   

7.
The mammalian fatty acid-binding proteins (FABP) are localized in many distinct cell types. They bind long chain fatty acidsin vitro, however, their functions and mechanisms of actionin vivo remain unknown. The present studies have sought to understand the relationships among these proteins, and to address the possible role of FABP in cellular fatty acid traffic. A series of anthroyloxy-labeled fluorescent fatty acids have been used to examine the physicochemical properties of the fatty acid-binding sites of different members of the FABP family. The fatty acid probes have also been used to study the rate and mechanism of fatty acid transfer from different FABP types to phospholipid membranes. The results of these studies show a number of interesting and potentially important differences between FABP family members. An examination of adipocyte and heart FABP (A- and H-FABP) shows that their fatty acid-binding sites are less hydrophobic than the liver FABP (L-FABP) site, and that the bound ligand experiences less motional constraint within the A- and H-FABP binding sites than within the L-FABP binding site. In keeping with these differences in structural properties, it was found that anthroyloxy-fatty acid transfer from A- and H-FABP to membranes is markedly faster than from L-FABP. Moreover, the mechanism of fatty acid transfer was found to be similar for the highly homologous logous A- and H-FABP, whereby transfer to phospholipid membranes appears to occur via transient collisional interactions between the FABP and membranes. Transfer of fatty acids from L-FABP, in contrast, occurs via an aqueous phase diffusion mechanism. Other studies utilized fluorescent fatty acid and monoacylglycerol derivatives to compare how the two FABP which are present in high abundance in the proximal small intestine interact with the two major products of dietary triacylglycerol hydrolysis. The results showed that whereas L-FABP binds both fatty acid and monoacylglycerol derivatives, intestinal FABP (I-FABP) appears to bind fatty acid but not monoacylglycerol. In summary, studies with fluorescent ligands have demonstrated unique properties for different FABP family members. A number of these differences appear to correlate with the degree of primary sequence homology between the proteins, and suggest functional diversity within the FABP family.Abbreviations FABP Fatty Acid-Binding Protein - L-FABP Liver FABP - H-FABP Heart FABP - A-FABP Adipocyte FABP - I-FABP Intestinal FABP - AOffa n-(9-anthroyloxy)fatty acid - MG Monoacylglycerol - NBD-PE N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine  相似文献   

8.
1. Two distinct fatty acid binding proteins (FABPs) were isolated and characterized from chicken duodenal mucosa. 2. Molecular weight, functional activity, immunospecificity, mRNA expression, and amino acid composition data for the 14 kDa chicken intestinal FABP was similar, yet not identical, to that of a previously isolated chicken liver FABP. 3. Bound fatty acids were shown to produce isoforms of the 14 kDa intestinal protein but not the larger molecular weight intestinal FABP.  相似文献   

9.
The rat heart contains an abundant cytosolic protein which binds long chain fatty acids. We have determined its primary structure by Edman degradation of peptides generated from chymotryptic, tryptic, and elastase digestions. This polypeptide (Mr = 14,992) contains 134 amino acids and has a blocked (acetylated) NH2 terminus. The sequence of rat heart fatty acid-binding protein (FABP) is remarkably similar to the murine adipocyte 422 protein and the P2 protein of peripheral nerve myelin. Computer-assisted alignment of heart FABP and 422 revealed that 82 of 132 comparable residues are identical (62%). There are 77 identities out of 131 possible matches between this protein and the human myelin P2 protein (59%). Similar comparisons demonstrate that heart FABP has significant homology to several other proteins which bind hydrophobic ligands. The rank of order of similarity to heart FABP is: 422 greater than myelin P2 greater than cellular retinoic acid-binding protein greater than cellular retinol-binding protein II greater than cellular retinol-binding protein greater than intestinal FABP greater than liver FABP. These eight sequences form a family of paralogous homologues. Heart FABP has a region of internal homology involving tandemly arrayed oligopeptides spanning residues 71-100 and 101-131. This feature is not found in the 422 and P2 sequences. The endogenous ligands bound by the 422, P2, and heart FABP sequences have not been defined. Interpretation of the biological significance of their structural similarities and differences will require information about their ligand specificities and affinities.  相似文献   

10.
Fatty acid binding proteins (FABP) form a family of proteins displaying tissue-specific expression. These proteins are involved in fatty acid (FA) transport and metabolism by mechanisms that also appear to be tissue-specific. Cellular retinoid binding proteins are related proteins with unknown roles in FA transport and metabolism. To better understand the origin of these tissue-specific differences we report new measurements, using the acrylodated intestinal fatty acid binding protein (ADIFAB) method, of the binding of fatty acids (FA) to human fatty acid binding proteins (FABP) from brain, heart, intestine, liver, and myelin. We also measured binding of FA to a retinoic acid (CRABP-I) and a retinol (CRBP-II) binding protein and we have extended to 19 different FA our characterization of the FA-ADIFAB and FA-rat intestinal FABP interactions. These studies extend our previous analyses of human FABP from adipocyte and rat FABPs from heart, intestine, and liver. Binding affinities varied according to the order brain approximately myelin approximately heart > liver > intestine > CRABP > CRBP. In contrast to previous studies, no protein revealed a high degree of selectivity for particular FA. The results indicate that FA solubility (hydrophobicity) plays a major role in governing binding affinities; affinities tend to increase with increasing hydrophobicity (decreasing solubility) of the FA. However, our results also reveal that, with the exception of the intestinal protein, FABPs exhibit an additional attractive interaction for unsaturated FA that partially compensates for their trend toward lower affinities due to their higher aqueous solubilities. Thermodynamic potentials were determined for oleate and arachidonate binding to a subset of the FABP and retinoid binding proteins. FA binding to all FABPs was enthalpically driven. The DeltaH degrees values for paralogous FABPs, proteins from the same species but different tissues, reveal an exceptionally wide range of values, from -22 kcal/mol (myelin) to -7 kcal/mol (adipocyte). For orthologous FABPs from the same tissue but different species, DeltaH degrees values were similar. In contrast to the enthalpic dominance of FA binding to FABP, binding of FA to CRABP-I was entropically driven. This is consistent with the notion that FA specificity for FABP is determined by the enthalpy of binding. Proteins from different tissues also revealed considerable heterogeneity in heat capacity changes upon FA binding, DeltaC(p) values ranged between 0 and -1.3 kcal mol(-1) K(-1). The results demonstrate that thermodynamic parameters are quite different for paralogous but are quite similar for orthologous FABP, suggesting tissue-specific differences in FABP function that may be conserved across species.  相似文献   

11.
Arachidonic acid metabolism by lipoxygenases and cytochrome P450 monooxygenases produces regioisomeric hydroperoxyeicosatetraenoic acids (HPETEs), hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs), and dihydroxyeicosatrienoic acids (DHETs), which serve as components of cell signaling cascades. Intracellular fatty acid-binding proteins (FABPs) may differentially bind these nonprostanoid oxygenated fatty acids, thus modulating their metabolism and activities. Vascular cells, which express heart FABP (H-FABP), utilize oxygenated fatty acids for regulation of vascular tone. Therefore, the relative affinities of H-FABP for several isomeric series of these compounds were measured by fluorescent displacement of 1-anilinonaphthalene-8-sulfonic acid (ANS). In general, H-FABP rank order affinities (arachidonic acid > EETs > HETEs > DHETs) paralleled reversed-phase high-performance liquid chromatography retention times, indicating that the differences in H-FABP affinity were determined largely by polarity. H-FABP displayed a similar rank order of affinity for compounds derived from linoleic acid. H-FABP affinity for 20-HETE [apparent dissociation constant (K(d)') of 0.44 microM] was much greater than expected from its polarity, indicating unique binding interactions for this HETE. H-FABP affinity for 5,6-EET and 11,12-EET (K(d)' of approximately 0.4 microM) was approximately 20-fold greater than for DHETs (K(d)' of approximately 8 microM). The homologous proteins, liver FABP and intestinal FABP, also displayed selective affinity for EET versus DHET. Thus, FABP binding of EETs may facilitate their intracellular retention whereas the lack of FABP affinity for DHETs may partially explain their release from cells. The affinity of H-FABP for EETs suggests that this family of intracellular proteins may modulate the metabolism, activities, and targeting of these potent eicosanoid biomediators.  相似文献   

12.
Evidence is provided in this paper that indicates that fatty acids but not phospholipids are removed from microsomes or artificial membranes (liposomes, unilamellar vesicles) by mouse liver cytosolic preparations enriched with fatty acid binding protein (FABP). The cytosolic proteins can act as acceptors for fatty acids but not for phospholipids of microsomal origin. Direct evidence came when liposomes made of egg yolk phosphatidylcholine, containing both [14C]labeled phospholipids and [1-14C] palmitic acid were incubated with FABP. Using sonicated vesicles as fatty acid or phospholipid donors, mouse liver fatty acid binding protein was capable of binding palmitic acid but not phospholipids. These studies suggest that liver fatty acid binding protein can interact with different kinds of membranes increasing specifically the desorption of fatty acids.Abbreviations FABP Fatty Acid Binding Protein - PC Phos phatidylcholine Fellow of the Comisión de Investigaciones Cientificas de la Provincia de Buenos Aires (CIC), ArgentinaMember of Carrera de Investigador Científico, Consejo Nacional de Investigaciones Cientificas y Técnicas de la Republica Argentina (CONICET)  相似文献   

13.
Defatted liver fatty acid binding protein (FABP) reverses the inhibitory effect of palmitoyl-CoA on adenine nucleotide transport in rat liver mitochondria; addition of titrating amounts of FABP to mitochondria pretreated with palmitoyl-CoA stimulates nucleotide transport and that activation parallels the removal of the inhibitor from mitochondria. This effect is specific only for FABP; all other cytosolic proteins which do not bind fatty acids do not influence nucleotide transport activity. Addition of free fatty acids (which can compete for ligand binding sites on FABP) to mitochondria pretreated with palmitoyl-CoA interferes with the reversal activity of FABP. Adding FABP alone to freshly isolated mitochondria also activates nucleotide transport activity suggesting that the originally submaximal activity is probably due to the presence of endogenous long-chain acyl-CoA esters in the mitochondrial preparation. Because FABP is present in relatively high concentration in most mammalian cells, these observations offer a likely explanation of why the potent inhibitory effects of long-chain acyl-CoA esters on adenine nucleotide transport in isolated mitochondria are not seen in the intact cell.  相似文献   

14.
Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.  相似文献   

15.
16.
High-affinity, Na+-dependent synaptosomal amino acid uptake systems are strongly stimulated by proteins which are known to bind fatty acids, including the Mr 12 000 fatty acid binding protein (FABP) from liver. To explore the possibility that such a function might be served by fatty acid binding proteins intrinsic to brain, we examined the 105000g supernatant of brain for fatty acid binding. Observed binding was accounted for mainly by components excluded by Sephadex G-50, and to a small degree by the Mr 12 000 protein fraction (brain FABP fraction). The partially purified brain FABP fraction contained a protein immunologically identical with liver FABP as well as a FABP electrophoretically distinct from liver FABP. Brain FABP fraction markedly stimulated synaptosomal Na+-dependent, but not Na+-independent, amino acid uptake, and also completely reversed the inhibition of synaptosomal Na+-dependent amino acid uptake induced by oleic acid. Palmitic, stearic, and oleic acids were endogenously associated with the brain FABP fraction. These data are consistent with the hypothesis that Mr 12 000 soluble FABPs intrinsic to brain may act as regulators of synaptosomal Na+-dependent amino acid uptake by sequestering free fatty acids which inhibit this process.  相似文献   

17.
Delipidated proteins from albumin-free liver and heart cytosol obtained from rats sacrificed at the mid-dark or the mid-light phase of the light cycle were assayed for their palmitate-binding capacity. In both tissues a marked variation of this binding capacity was observed from about 3-4 nmol/mg of protein in the mid-light phase of the cycle to about 7-8 nmol/mg of protein in the mid-dark phase. Sephadex G-75 chromatography of the cytosolic proteins revealed that the palmitate binding could in all cases almost entirely be attributed to proteins of Mr = 12,000-14,000, suggesting that the observed diurnal variations are related to differences in the content of fatty acid-binding protein (FABP). In both rat liver and heart FABP represents about 4 (mid-light) to 8% (mid-dark) of the total soluble proteins. Cholestyramine feeding increased the FABP content of liver cytosol from rats sacrificed at the mid-light phase, but not in those sacrificed at the mid-dark phase, in such a way that the diurnal variation of the FABP content virtually disappeared. The palmitate oxidation capacity and citrate synthase activity also exhibited a concomitant diurnal periodicity in rat liver and, to a lesser extent, in rat heart. The results provide additional evidence for an important role of FABP in cellular fatty acid metabolism in both liver and heart and for the similarity of FABP with sterol carrier protein.  相似文献   

18.
Epoxyeicosatrienoic acids (EETs) are potent regulators of vascular homeostasis and are bound by cytosolic fatty acid-binding proteins (FABPs) with K(d) values of approximately 0.4 microM. To determine whether FABP binding modulates EET metabolism, we examined the effect of FABPs on the soluble epoxide hydrolase (sEH)-mediated conversion of EETs to dihydroxyeicosatrienoic acids (DHETs). Kinetic analysis of sEH conversion of racemic [(3)H]11,12-EET yielded K(m) = 0.45 +/- 0.08 microM and V(max) = 9.2 +/- 1.4 micromol min(-1) mg(-)(1). Rat heart FABP (H-FABP) and rat liver FABP were potent inhibitors of 11,12-EET and 14,15-EET conversion to DHET. The resultant inhibition curves were best described by a substrate depletion model, with K(d) = 0.17 +/- 0.01 microM for H-FABP binding to 11,12-EET, suggesting that FABP acts by reducing EET availability to sEH. The EET depletion by FABP was antagonized by the co-addition of arachidonic acid, oleic acid, linoleic acid, or 20-hydroxyeicosatetraenoic acid, presumably due to competitive displacement of FABP-bound EET. Collectively, these findings imply that FABP might potentiate the actions of EETs by limiting their conversion to DHET. However, the effectiveness of this process may depend on metabolic conditions that regulate the levels of competing FABP ligands.  相似文献   

19.
Adipose lipolysis is mediated, in part, via interaction of fatty acid-binding protein (FABP) with hormone-sensitive lipase (HSL). Mice with reduced FABP content in fat (adipocyte FABP null) exhibit diminished fat cell lipolysis, whereas transgenic mice with increased FABP content in fat (epithelial FABP transgenic) exhibit enhanced lipolysis. To examine the relationship between the binding of FABP to HSL and activation of catalytic activity, isothermal titration microcalorimetry as well as kinetic analysis using a variety of FABP isoforms have been employed. In the absence of fatty acids, no FABP-HSL association could be demonstrated for any FABP form. However, in the presence of 10 microm oleate, A-FABP and E-FABP each bound to HSL with high affinity (Kd of 0.5 and 3 nM, respectively) in a approximately 1:1 molar stoichiometry, whereas liver FABP and intestinal FABP did not exhibit any association. To compare binding to catalysis, each FABP isoform was incubated with HSL in vitro, and enzymatic activity was assessed. Importantly, each FABP form stimulated HSL activity approximately 2-fold using cholesteryl oleate as substrate but exhibited no activation using p-nitrophenyl butyrate. The activation by A-FABP was dependent upon its fatty acid binding properties because a non-fatty acid binding mutant, R126Q, failed to activate HSL. These results suggest that binding and activation of HSL by FABPs are separate and distinct functions and that HSL contains a site for fatty acid binding that allows for FABP association.  相似文献   

20.
Summary A high-resolution, solution-state NMR method for characterizing and comparing the interactions between carboxyl 13C-enriched fatty acids (FA) and individual binding sites on proteins has been developed. The utility of this method results from the high degree of resolution of carboxyl from other carbon resonances and the high sensitivity of FA carboxyl chemical shifts to intermolecular environmental factors such as degree of hydrogen-bonding or hydration, degree of ionization (pH), and proximity to positively-charged or aromatic side-chain moieties in proteins. Information can be obtained regarding binding heterogeneity (structural as well as thermodynamic), binding stoichiometries, relative binding affinities, the ionization behavior of bound FA and protein side-chain moieties, the physical and ionization states of unbound FA, and the exchange rates of FA between protein binding sites and between protein and non-protein acceptors of FA, such as model membranes.Cytosolic fatty acid binding proteins represent an excellent model system for studying and comparing fatty acid-protein interactions. Prokaryotic expression vectors have been used to direct efficient synthesis of several mammalian intestinal FABPs in E. coli. This has enabled us to isolate gram-quantities of purified FABPs, to introduce NMR-observable isotopes, and to generate FABP mutants.The intestine is the only tissue known to contain abundant quantities of more than one FABP homologue in a single cell type. It is likely that these homologous FABPs serve distinct functional roles in intestinal lipid transport. This paper presents comparative 13C NMR results for FA interactions with FABP homologues from intestine, and the functional implications of these analyses are discussed.Abbreviations FA Fatty Acid(s) - FABP Fatty Acid Binding Protein(s) - I-FABPc Cytosolic rat intestinal Fatty Acid Binding Protein - L-FABPc Cytosolic rat liver Fatty Acid Binding Protein - CD Circular Dichroic spectroscopy Established Investigator of the American Heart Association  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号