首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
γ-Aminobutyrate transaminase (GABA-T) catalyzes the conversion of GABA to succinic semialdehyde. Using differential display PCR and cDNA library screening, a full-length GABA-T cDNA (OsGABA-T) was isolated from rice (Oryza sativa) leaves infected with an incompatible race of Magnaporthe grisea. The deduced amino acid sequence comprises 483 amino acid residues and shares 85–69% identity with GABA-T sequences from other plants. OsGABA-T expression is induced by blast fungus infection, mechanical wounding and ultraviolet radiation in rice leaves and is not detected in normal rice organs. This gene is also induced by defense signal molecules such as salicylic acid and abscisic acid, but not by jasmonic acid. Our data suggest that OsGABA-T (GABA shunt) may play a role in restricting the levels of cell death during the host–pathogen interaction.  相似文献   

2.
Macroconidia ofMicrosporum canis, when placed in a nutrient medium produce germ tubes within 4–6 h. Precursor incorporation studies showed that protein synthesis occurred prior to RNA synthesis. Sucrose density gradient analysis of wet and dry spore extracts revealed the presence of 16 % and 11 % polysomes respectively. The polysomal content increased to about 50% within 15 min of germination. Synthesis of RNA occurred only after 2 h of germination. Pool equilibration of the radioactive precursors was not limiting to these measurements. Polyadenylated RNA was isolated from macroconidia and was found to comprise 2–2.5 % of the total RNA. The poly(A)+ RNAs were heterodisperse and translatable in a wheat germ cell free translating system. It was concluded that macroconidia ofMicrosporum canis contain pre-formed mRNA which is translated early in germination  相似文献   

3.
Bacillus pumilis F3-4 utilized feather as a sole source of carbon, nitrogen and sulfur. Supplementation of the feather medium with glucose or MgSO4 · 7H2O increased keratinolytic protease production (14.6–16.7 U/mg). The synthesis of keratinolytic protease was repressed by an exogenous nitrogen source. Keratinolytic protease was produced in the absence of feather (9.4 U/mg). Feather degradation resulted in sulfhydryl group formation (0.8–2.6 μM). B. pumilis F3-4 effectively degraded chicken feather (75%), duck feather (81%) and feather meal (97%), whereas human nails, human hair and sheep wool under went less degradation (9–15%). An erratum to this article can be found at  相似文献   

4.
The anti-cancer drug taxol binds to β-tubulin in assembled microtubules and causes cell cycle arrest in animal cells; in contrast, in fungi, the effect of taxol varies. For instance, the taxol-producer Pestalotiopsis microspora Ne32, an ascomycete, is resistant to taxol (IC50 greater than 11.7 μM), whereas Pythium ultimum, an oomycete, is sensitive to taxol (IC50 0.1 μM). In order to understand the differential fungal response to taxol, we isolated cDNAs encoding β-tubulin from both P. microspora and P. ultimum. The deduced amino acid sequence of β-tubulin from P. microspora is very similar to those from other Ascomycetes, many of which are resistant to taxol. The sequence of β-tubulin from P. ultimum is very similar to those from Oomycetes and non-fungal organisms, many of which are sensitive to taxol. To examine the interaction between taxol and fungal microtubules, binding studies were performed with fungal cells, using [3H]taxol. The labeled taxol was found to bind specifically to P. ultimum, but not to P. microspora. In addition, the amount of [3H]taxol specifically bound to P. ultimum was reduced by the microtubule-depolymerizing drug thiabendazole, in a dose-dependent manner. These results suggest efficient binding of taxol to microtubules in P. ultimum, but not in P. microspora, and are consistent with the differential taxol sensitivity of these two organisms. Finally a comparison of previously characterized taxol binding sites in various β-tubulin sequences showed that β-tubulins of taxol-sensitive organisms, including P. ultimum, contain Thr219, but β-tubulins of resistant organisms, including P. microspora, contain Asn or Gln at this position, suggesting an important role for residue 219 in the interaction between taxol and β-tubulin. Received: 16 March 1999 / Accepted: 21 August 1999  相似文献   

5.
L-cysteine desulfhydrase (CD) plays an important role in L-cysteine decomposition. To identify the CD gene in Pseudomonas sp. TS1138 and investigate its effect on the L-cysteine biosynthetic pathway, the CD gene was cloned from Pseudomonas sp. TS1138 by polymerase chain reaction (PCR) method. The nucleotide sequence of CD gene was determined to be 1,215 bp, and its homology with other sequences encoding CD was analyzed. Then the CD gene was subcloned into pET-21a(+) vector and expressed in Escherichia coli (E. coli) by isopropyl-β-D-thiogalactopyranoside (IPTG) inducement. The recombinant CD was purified by Ni-NTA His-Bind resin, and its activity was identified by the CD activity staining. The enzymatic properties of the recombinant CD were characterized and its critical role involved in the L-cysteine biosynthetic pathway was also discussed. __________ Translated from Microbiology, 2006, 33(4): 21–26 [译自: 微生物学通报]  相似文献   

6.
7.
To apply the fundamental principles of genome shuffling in breeding of taxol-producing fungi, Nodulisporium sylviform was used as starting strain in this work. The procedures of protoplast fusion and genome shuffling were studied. Three hereditarily stable strains with high taxol production were obtained by four cycles of genome shuffling. The qualitative and quantitative analysis of taxol produced was confirmed using thin-layer chromatography (TLC), high performance liquid chromatography (HPLC) and LC-MS. A high taxol producing fungus, Nodulisporium sylviform F4-26, was obtained, which produced 516.37 μg/L taxol. This value is 64.41% higher than that of the starting strain NCEU-1 and 31.52%–44.72% higher than that of the parent strains.  相似文献   

8.
We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.  相似文献   

9.
Phyllosticta tabernaemontanae, a leaf spot fungus isolated from the diseased leaves of Wrightia tinctoria, showed the production of taxol, an anticancer drug, on modified liquid medium (MID) and potato dextrose broth (PDB) medium in culture for the first time. The presence of taxol was confirmed by spectroscopic and chromatographic methods of analysis. The amount of taxol produced by this fungus was quantified using high performance liquid chromatography (HPLC). The maximum amount of taxol production was recorded in the fungus grown on MID medium (461 μg/L) followed by PDB medium (150 μg/L). The production rate was increased to 9.2 × 103 fold than that found in the culture broth of earlier reported fungus, Taxomyces andreanae. The results designate that P. tabernaemontanae is an excellent candidate for taxol production. The fungal taxol extracted also showed a strong cytotoxic activity in the in vitro culture of tested human cancer cells by apoptotic assay.  相似文献   

10.
Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria   总被引:4,自引:0,他引:4  
Mitochondria isolated from the roots of barley (Hordeum vulgare L.) and rice (Oryza sativa L.) seedlings were capable of oxidizing external NADH and NADPH anaerobically in the presence of nitrite. The reaction was linked to ATP synthesis and nitric oxide (NO) was a measurable product. The rates of NADH and NADPH oxidation were in the range of 12–16 nmol min−1 mg−1 protein for both species. The anaerobic ATP synthesis rate was 7–9 nmol min−1 mg−1 protein for barley and 15–17 nmol min−1 mg−1 protein for rice. The rates are of the same order of magnitude as glycolytic ATP production during anoxia and about 3–5% of the aerobic mitochondrial ATP synthesis rate. NADH/NADPH oxidation and ATP synthesis were sensitive to the mitochondrial inhibitors myxothiazol, oligomycin, diphenyleneiodonium and insensitive to rotenone and antimycin A. The uncoupler FCCP completely eliminated ATP production. Succinate was also capable of driving ATP synthesis. We conclude that plant mitochondria, under anaerobic conditions, have a capacity to use nitrite as an electron acceptor to oxidize cytosolic NADH/NADPH and generate ATP.  相似文献   

11.
12.
Summary An efficient system to regenerate shoots on excised sepals (calyx) of greenhouse-grown ‘Bounty’ strawberry (Fragaria x ananassa Duch.) was developed in vitro. Sepal cultures produced multiple buds and shoots without an intermediary callus phase on 2–4 μM 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron, TDZ)-containing shoot induction medium within 4–5 wk of culture initiation. Young expanding sepals with the adaxial side touching the culture medium and maintained for 14 d in darkness produced the best results. In a second experiment, sepals proved more effective than the leaf discs and petiole segments for regenerating shoots. A third experiment compared the effects of six concentrations of two cytokinins (TDZ at 0, 0.5, 2, and 4 μM and zeatin at 2 and 4 μM) for elongation of sepal-derived adventitious shoots. The media containing TDZ generally promoted more callus formation and suppressed shoot elongation. TDZ-initiated cultures transferred into the medium containing 2–4 μM zeatin, produced usable shoots after one additional subculture. Shoots were rooted in vitro in the same medium used for shoot regeneration, but without any growth regulators. When transferred to potting medium, 85–90% of in vitro plantlets survived.  相似文献   

13.
Summary A protocol for high-frequency callus, somatic embryogenesis, and plant regeneration for Tripsacum is described. Plants were regenerated from complete shoot meristems (3–4 mm) via organogenesis and embryogenesis. In organogenesis, the shoot meristems were cultured directly on a high cytokinin medium comprising 5–10 mgl−1 (22.2–44.4 μM) 6-benzyladenine (BA). The number of multiple shoots varied from six to eight from each meristem. The time required for production of plants from organogenesis was rapid (4–6 wk). In contrast, callus was induced on an auxin medium and continuously cultured on an auxin medium for production of somatic embryos. Prolific callus with numerous somatic embryos developed within 3–4 wk when cultured on an auxin medium containing 5 mgl−1 (22.6μM), 2,4-dichlorophenoxyacetic acid (2,4-D). The number of shoots induced varied from two to five per callus. Regardless of the cultivars used, the frequency of callus induction and plant regeneration was between 48% and 94%. The seed germination procedures also were modified and resulted in a maximum of 60–80% seed germination. Finally, the rate of T-DNA transfer to complete shoot meristems of Tripsacum was high on the auxin medium and was independent of whether super-virulent strains of Agrobacterium were used or not.  相似文献   

14.
Summary Our aim was to examine whether lipopolysaccharide of Escherichia coli, polyamines of dietetic and/or bacterial origin, and products of the bacterial metabolism influence cell proliferation in epithelial cells from the colon and small intestine. Lipopolysaccharide of Escherichia coli 0111:B4 was incubated with cultures from human colonic mucosa. The mitoses were arrested with Vincristine and the total number of metaphases per crypt was counted. In addition, lipopolysaccharide was incubated with a human colonic epithelial cell line from adenocarcinoma (LS-123 cells) and with a nontransformed small intestinal cell line from germ-free rats (IEC-6 cells) for 24 h. In the last 4 h, the cells were labeled with tritiated thymidine. The cells were incubated with putrescine, cadaverine, and spermidine at 10−11–10−3 M and with acetic acid (10−5–10−1 M), acetaldehyde (10−10–10−4 M) and ammonium chloride (1–20 mM). Lipopolysaccharide of Escherichia coli increased the number of arrested metaphases in human colonic crypts and DNA synthesis in L-123 and IEC-6 cells (P<0.001). All polyamines increased DNA synthesis in the colonic and small intestinal cell lines, the effects being more marked for putrescine (P<0.001). The higher concentrations of acetic acid increased DNA synthesis in both epithelial cell lines (P<0.001). Acetaldehyde slightly decreased DNA synthesis in LS-123 cells at cytotoxic concentrations. Ammonium chloride did not significantly affect DNA synthesis. The final concentration of nonionized ammonia was less than 3%. It is concluded that lipopolysaccharides of Escherichia coli and intraluminal factors derived from microorganisms increase cell proliferation in human colonic crypts and intestinal epithelial cell lines.  相似文献   

15.
Wang Z  Chen S  Sun M  Yu Z 《Biotechnology letters》2007,29(5):779-784
The production of α-ketoglutarate, adenine, thuringiensin production rate and thuringiensin yield on glucose consumed increased by 22%, 36%, 40% and 40%, respectively, in presence of 2 g citrate/l. However, citrate decreased pyruvate production, poly-β-hydroxybutyrate (PHB) production rate and PHB yield by 62%, 31% and 45%, respectively. The activities of pyruvate kinase and glucose-6-phosphate dehydrogenase were 36%–45% lower and 50%–120% higher than those of the control, respectively. The results suggest that citrate regulated the carbon flux to synthesis of adenine present in thuringiensin with a higher efficiency of utilization of glucose by decreasing PHB synthesis.  相似文献   

16.
In order to determine the influence of polymorphism in thymidylate synthase (TS 28-bp repeat) and methionine synthase (MS A2756G) genes on the susceptibility to acute lymphoblastic leukemia (ALL), 73 children with ALL and 128 age and sex matched unrelated healthy individuals from the Kermanshah Province of Iran were screened. The genotyping of TS 28-bp repeat and MS A2756G polymorphisms were performed by polymerase chain reaction (PCR) and PCR–RFLP, respectively. The frequency of TS 2R allele in patients and controls were 41.5 and 38%, respectively (Odds ratios (OR) = 1.13, 95%CI 0.73–1.74, P = 0.56). The allelic frequency of G allele of MS was higher (25%) in patients compared with healthy subjects (23%) (OR = 1.09, 95%CI 0.67–1.75, P = 0.71). Considering MS AA and TS 3R3R genotypes as reference indicated that individuals with MS GG + TS 2R2R genotypes have 1.3-fold increase in the risk of ALL (OR = 1.3, 95%CI 0.6–2.7, P = 0.5). Our results showed that neither TS 28-bp repeat nor MS A2756G polymorphisms are risk factors for susceptibility to ALL in Western Iran.  相似文献   

17.
18.
The genome sequence of Streptomyces coelicolor A3(2) contains 51 putative lipase and esterase genes mostly of unknown function. The gene estB (locus SCO 6966) was expressed as a His-tagged protein in E. coli. Esterase B was active at low temperatures exerting its maximum activity at 30°C and retaining more than 25% of its activity at 4°C. The optimum pH was 8–8.5. The enzyme was active against short synthetic p-nitrophenylesters (C2–C10) with maximum activity towards the acetate ester (C2). The esterase was tested on 13 series of racemic esters of potential interest for the synthesis of chiral pharmaceutical compounds. 4 of the series were substrates and a modest degree of enantioselectivity was observed (enantiomeric ratios of 1.1–1.9).  相似文献   

19.
Mating disruption for control of variegated leafroller (VLR),Platynota flavedana (Clemens), tufted apple bud moth (TBM),P. ideausalis Walker, and redbanded leafroller (RBL),Argyrotaenia velutinana (Walker), was studied in Virginia apple orchards in 1989 and 1990. In 1989, each dispenser (1000/ha) contained 190 mg of 67.2%E11–14:Ac, 28.8%Z11–14:Ac, 1.4%E11–14:OH, 0.6%Z11–14:OH, and 2%Z9–12:Ac (a putative generic leafroller disruption blend). Trap captures of VLR, TBM and RBL were reduced by 97%, 51% and 55%, respectively. Average leafroller injury in the interior and edge of the pheromone block was 3.8% and 2.7%, respectively. The conventional control and abandoned blocks had 0.05 and 27.5% injury, respectively. Dispensers containingE11–14:OH (70%) andZ11–14:OH (30%) (close to the natural blend of VLR), more effectively disrupted orientation to pheromone traps by bothPlatynota spp. than did the generic blend. In 1990, dispensers containing 150 mg ofE11–14:OH (70%) andZ11–14:OH (1000/ha) were placed in two 2-ha blocks and one 4-ha block. One pheromonetreated block was sprayed in August with phosmet for codling moth, not timed for leafrollers. Trap captures of VLR and TBM were reduced by almost 100% and 69%, respectively. RBL captures were not reduced by VLR pheromone permeation. Injury fromPlatynota spp. in pheromone block middles and edges ranged from 0.3–1.7% and 0.3–2.3%, respectively. Injury in conventional blocks ranged from 0–1.1%. RBL injury in pheromone block middles ranged from 0–6.1%, and in edges, 1.7–4.8%. Injury in control blocks ranged from 0–1.1%. Combined leafroller injury in an abandoned block was 18% (s.e. 0.3). Release rates averaged 30 and 32 mg/ha/h for the VLR and generic pheromone dispensers, respectively.  相似文献   

20.
Endosymbiosis is an intriguing plant–animal interaction in the dinoflagellate–Cnidaria association. Throughout the life span of the majority of corals, the dinoflagellate Symbiodinium sp. is a common symbiont residing inside host gastrodermal cells. The mechanism of regulating the cell proliferation of host cells and their intracellular symbionts is critical for a stable endosymbiotic association. In the present study, the cell cycle of a cultured Symbiodinium sp. (clade B) isolated from the hermatypic coral Euphyllia glabrescens was investigated using flow cytometry. The results showed that the external light–dark (L:D) stimulation played a pivotal role in regulating the cell cycle process. The sequential light (40–100 μmol m−2 s−1 ~ 12 h) followed by dark (0 μmol m−2 s−1 ~ 12 h) treatment entrained a single cell cycle from the G1 to the S phase, and then to the G2/M phase, within 24 h. Blue light (~450 nm) alone mimicked regular white light, while lights of wavelengths in the red and infrared area of the spectrum had little or no effect in entraining the cell cycle. This diel pattern of the cell cycle was consistent with changes in cell motility, morphology, and photosynthetic efficiency (F v /F m ). Light treatment drove cells to enter the growing/DNA synthesis stage (i.e., G1 to S to G2/M), accompanied by increasing motility and photosynthetic efficiency. Inhibition of photosynthesis by 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea (DCMU) treatment blocked the cell proliferation process. Dark treatment was required for the mitotic division stage, where cells return from G2/M to G1. Two different pools of adenylyl cyclase (AC) activities were shown to be involved in the growing/DNA synthesis and mitotic division states, respectively. Communicated by Biology Editor Dr Michael Lesser  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号