首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitogen-activated protein (MAP) kinase cascades are conserved signal transduction pathways that are required for eukaryotic cells to respond to a variety of stimuli. Multiple MAP kinase pathways can function within a single cell type; therefore, mechanisms that insulate one MAP kinase pathway from adventitious activations by parallel pathways may exist. We have studied interactions between the mating pheromone response and the osmoregulatory (high-osmolarity glycerol response [HOG]) pathways in Saccharomyces cerevisiae which utilize the MAP kinases Fus3p and Hog1p, respectively. Inactivating mutations in HOG pathway kinases cause an increase in the phosphotyrosine content of Fus3p, greater expression of pheromone-responsive genes, and increased sensitivity to growth arrest by pheromone. Therefore, the HOG pathway represses mating pathway activity. In a HOG1+ strain, Fus3p phosphotyrosine increases modestly and transiently following an increase in the extracellular osmolarity; however, it increases to a greater extent and for a sustained duration in a hog1-delta strain. Thus, the HOG-mediated repression of mating pathway activity may insulate the mating pathway from activation by osmotic stress. A FUS3 allele whose gene product is resistant to the HOG-mediated repression of its phosphotyrosine content has been isolated. This mutant encodes an amino acid substitution in the highly conserved DPXDEP motif in subdomain XI. Other investigators have shown that the corresponding amino acid is also mutated in a gain-of-function allele of the MAP kinase encoded by the rolled locus in Drosophila melanogaster. These data suggest that the DPXDEP motif plays a role in the negative regulation of MAP kinases.  相似文献   

2.
Mitogen activated protein (MAP) kinases and their target ribosomal protein S6 (RSK) kinases have been recognized as shared components in the intracellular signaling pathways of many diverse cytokines. Recent studies have extended this protein kinase cascade by identifying the major activator of vertebrate MAP kinases as a serine/threonine/tyrosine-protein kinase called MEK, which is related to yeast mating factor-regulated protein kinases encoded by the STE7 and byr1 genes. MEK, in turn, may be activated following its phosphorylation on serine by either of the kinases encoded by proto-oncogenesraf1 ormos, as well as by p78 mekk , which is related to the yeast STE11 and byr2 gene products. Isoforms of all of these protein kinases may specifically combine to assemble distinct modules for intracellular signal transmission. However, the fundamental architecture of these protein kinase cascades has been highly conserved during eukaryotic evolution.  相似文献   

3.
Lu X  Li Y 《Developmental biology》1999,208(1):233-243
The Src family of nonreceptor tyrosine kinases has been implicated in many signal transduction pathways. However, due to a possible functional redundancy in vertebrates, there is no genetic loss-of-function evidence that any individual Src family member has a crucial role for receptor tyrosine kinase (RTK) signaling. Here we show that an extragenic suppressor of Raf, Su(Raf)1, encodes a Drosophila Src family gene Src42A. Characterization of Src42A mutations shows that Src42A acts independent of Ras1 and that it is, unexpectedly, a negative regulator of RTK signaling. Our study provides the first evidence that Src42A defines a negative regulatory pathway parallel to Ras1 in the RTK signaling cascade. A possible model for Src42A function is discussed.  相似文献   

4.
B Z Shilo 《FASEB journal》1992,6(11):2915-2922
Communication between cells is a fundamental component of development and morphogenesis. Identification of the molecules mediating cell-cell communication is crucial for elucidation of the molecular basis of these processes. Receptor tyrosine kinases (RTKs) appear to play a central role in this context by transmitting into cells information dictating their fate. The functions of RTKs in Drosophila are extremely diverse, and include maternal determination of embryonic polarity (torso and torpedo), determination of neuroblast identity (faint little ball), and guidance of tracheal cell migration in the embryo (breathless). During compound eye development, RTKs affect the number of photoreceptor clusters (Ellipse) and the determination of photoreceptor R7 identity (sevenless). The phenotypes of mutations in RTK loci serve as a starting point for understanding processes dictating cell identity at the level of the whole organism. Recently, they have also begun to provide a basis for selection of second-site suppressor mutations, encoding additional elements in their signal transduction pathway. Common themes between the functions, regulation, and signal transduction pathways of Drosophila RTKs are drawn.  相似文献   

5.
The little R cell that could   总被引:5,自引:0,他引:5  
Drosophila eye development provides an excellent model system to study the role of inter-cellular signaling in the specification of unique cell fates. Behavioral screens by Benzer and his colleagues led to the identification of a gene, Sevenless, a receptor tyrosine kinase (RTK) receptor, required for the specification of the UV sensitive R7 cell. Genetic analysis further showed that the Ras/Raf/MAPK pathway function downstream of Sevenless in the specification of R7 fate. Signaling mediated by another RTK, EGFR and Notch have also been shown to function in either an antagonistic or a synergistic manner in the specification of cell fate during eye development. In some instances, these pathways are linked in a sequential manner by the regulation of the expression of Notch ligand, Delta by EGFR, while in others, these pathways function in a combinatorial fashion on enhancer elements to control target gene expression. In this review, we highlight the elegant genetic strategies used by several laboratories in early elucidation of the Sevenless pathway which helped link the RTK receptor to the Ras/Raf/MAPK cascade and discuss how EGFR and Notch signaling pathways are used in a reiterative manner and by combining in different modes, generate sufficient diversity required for the specification of unique cell fates.  相似文献   

6.
7.
Stop and go     
《Fly》2013,7(4):228-233
  相似文献   

8.
9.
Receptor tyrosine kinases (RTKs) and Notch (N) proteins are different types of transmembrane receptors that transduce extracellular signals and control cell fate. Here we examine cell fate specification in the Drosophila retina and ask how N acts together with the RTKs Sevenless (Sev) and the EGF receptor (DER) to specify the R7 photoreceptor. The retina is composed of many hundred ommatidia, each of which grows by recruiting surrounding, undifferentiated cells and directing them to particular fates. The R7 photoreceptor derives from a cohort of three cells that are incorporated together following specification of the R2-R5 and R8 photoreceptors. Two cells of the cohort are specified as the R1/6 photoreceptor type by DER activation. These cells then activate N in the third cell (the R7 precursor). By manipulation of N and RTK signaling in diverse combinations we establish three roles for N in specifying the R7 fate. The first role is to impose a block to photoreceptor differentiation; a block that DER activation cannot overcome. The second role, paradoxically, is to negate the first; Notch activation up-regulates Sev expression, enabling the presumptive R7 cell to receive an RTK signal from R8 that can override the block. The third role is to specify the cell as an R7 rather than an R1/6 once RTK signaling has specified the cells as a photoreceptor. We speculate why N acts both to block and to facilitate photoreceptor differentiation, and provide a model for how N and RTK signaling act combinatorially to specify the R1/6 and R7 photoreceptors as well as the surrounding non-neuronal cone cells.  相似文献   

10.
The Drosophila EGF receptor is required for differentiation of many cell types during eye development. We have used mosaic analysis with definitive null mutations to analyze the effects of complete absence of EGFR, Ras or Raf proteins during eye development. The Egfr, ras and raf genes are each found to be essential for recruitment of R1-R7 cells. In addition Egfr is autonomously required for MAP kinase activation. EGFR is not essential for R8 cell specification, either alone or redundantly with any other receptor that acts through Ras or Raf, or by activating MAP kinase. As with Egfr, loss of ras or raf perturbs the spacing and arrangement of R8 precursor cells. R8 cell spacing is not affected by loss of argos in posteriorly juxtaposed cells, which rules out a model in which EGFR acts through argos expression to position R8 specification in register between adjacent columns of ommatidia. The R8 spacing role of the EGFR was partially affected by simultaneous deletion of spitz and vein, two ligand genes, but the data suggest that EGFR activation independent of spitz and vein is also involved. The results prove that R8 photoreceptors are specified and positioned by distinct mechanisms from photoreceptors R1-R7.  相似文献   

11.
The mitogen-activated protein (MAP) kinase signal transduction pathway is an intracellular signaling cascade which mediates cellular responses to growth and differentiation factors. The MAP kinase pathway can be activated by a wide range of stimuli dependent on the cell types, and this is normally a transient response. Oncogenes such as ras, src, raf, and mos have been proposed to transform cells in part by prolonging the activated stage of components within this signaling pathway. The human papillomavirus (HPV) oncogenes E6 and E7 play an essential role in the in vitro transformation of primary human keratinocytes and rodent cells. The HPV type 16 E5 gene has also been shown to have weak transforming activity and may enhance the epidermal growth factor (EGF)-mediated signal transduction to the nucleus. In the present study, we have investigated the effects of the oncogenic HPV type 16 E5, E6, and E7 genes on the induction of the MAP kinase signaling pathway. The E5 gene induced an increase in the MAP kinase activity both in the absence and in the presence of EGF. In comparison, the E6 and E7 oncoproteins do not alter the MAP kinase activity or prolong the MAP kinase activity induced with EGF. These findings suggest that E5 may function, at least in part, to enhance the cell response through the MAP kinase pathway. However, the transforming activity of E6 and E7 is not associated with alterations in the MAP kinase pathway. These findings are consistent with E5 enhancing the response to growth factor stimulation.  相似文献   

12.
13.
BACKGROUND: Although many teratogens are known to activate apoptotic pathways culminating in abnormal development, little is known about how the embryo transduces a teratogenic exposure into specific responses. Signal reception and transduction are regulated by a number of signal transduction pathways, including the extracellular signal-regulated protein kinases (ERKs), c-Jun N-terminal kinases (JNKs) and the stress-activated protein kinase, p38. METHODS: To analyze the effects of teratogens on MAP kinases, we used whole embryo culture, Western blot analyses, and antibodies recognizing inactive or active MAP kinases, or both. RESULTS: We show that heat shock (HS) induces a rapid, strong, but transient activation of ERK, JNK, and p38 with maximal activation occurring within 30 min of the heat shock. By contrast, cyclophosphamide (CP) and staurosporine (ST) failed to activate ERK or JNK during the time period studied (7. 5 hr). ST and CP did induce a low but reproducible activation of p38 beginning at around 3 hr and 5 hr, respectively, after the initiation of exposure. Previous work has shown that heat shock induces elevated cell death in the embryo, primarily in the developing neuroepithelium, but not in the embryonic heart. Thus, we also compared the activation of these three MAP kinase pathways in heads, hearts, and trunks isolated from day 9 embryos exposed to 43 degrees C for 15 min. The results show that ERK, JNK, and p38 are activated in heads, hearts, and trunks. CONCLUSIONS: Our results show that day 9 embryos do activate MAP kinase signaling pathways in response to teratogenic exposures; however, activation of a particular pathway does not appear to be required for teratogen-induced apoptosis.  相似文献   

14.
Eight alleles of Dsor1 encoding a Drosophila homologue of mitogen-activated protein (MAP) kinase kinase were obtained as dominant suppressors of the MAP kinase kinase kinase D-raf. These Dsor1 alleles themselves showed no obvious phenotypic consequences nor any effect on the viability of the flies, although they were highly sensitive to upstream signals and strongly interacted with gain-of-function mutations of upstream factors. They suppressed mutations for receptor tyrosine kinases (RTKs); torso (tor), sevenless (sev) and to a lesser extent Drosophila EGF receptor (DER). Furthermore, the Dsor1 alleles showed no significant interaction with gain-of-function mutations of DER. The observed difference in activity of the Dsor1 alleles among the RTK pathways suggests Dsor1 is one of the components of the pathway that regulates signal specificity. Expression of Dsor1 in budding yeast demonstrated that Dsor1 can activate yeast MAP kinase homologues if a proper activator of Dsor1 is coexpressed. Nucleotide sequencing of the Dsor1 mutant genes revealed that most of the mutations are associated with amino acid changes at highly conserved residues in the kinase domain. The results suggest that they function as suppressors due to increased reactivity to upstream factors.  相似文献   

15.
《The Journal of cell biology》1993,122(5):1089-1101
The mitogen-activated protein (MAP) kinase signal transduction pathway represents an important mechanism by which growth factors regulate cell function. Targets of the MAP kinase pathway are located within several cellular compartments. Signal transduction therefore requires the localization of MAP kinase in each sub-cellular compartment that contains physiologically relevant substrates. Here, we show that serum treatment causes the translocation of two human MAP kinase isoforms, p40mapk and p41mapk, from the cytosol into the nucleus. In addition, we report that p41mapk (but not p40mapk) is localized at the cell surface ruffling membrane in serum-treated cells. To investigate whether the protein kinase activity of MAP kinase is required for serum-induced redistribution within the cell, we constructed mutated kinase-negative forms of p40mapk and p41mapk. The kinase-negative MAP kinases were not observed to localize to the cell surface ruffling membrane. In contrast, the kinase-negative MAP kinases were observed to be translocated to the nucleus. Intrinsic MAP kinase activity is therefore required only for localization at the cell surface and is not required for transport into the nucleus. Together, these data demonstrate that the pattern of serum-induced redistribution of p40mapk is different from p41mapk. Thus, in addition to common targets of signal transduction, it is possible that these MAP kinase isoforms may differentially regulate targets located in distinct sub-cellular compartments.  相似文献   

16.
The R7 photoreceptor, a unique cell type within the Drosophila ommatidium, was initially proposed to be specified by two distinct signals from neighboring cells, one from the R8 photoreceptor and another from the R1/6 photoreceptor pair. The R8-to-R7 signal is the transmembrane ligand Bride of Sevenless (Boss), which is received by the receptor tyrosine kinase Sevenless (Sev) and transduced via Ras activation within the presumptive R7 cell. However, the identity of the R1/6-to-R7 signal has remained elusive. Here, we present evidence that the transmembrane ligand Delta (Dl), expressed by the R1/6 pair, activates the receptor Notch (N) in the presumptive R7 cell and constitutes the postulated R1/6-to-R7 signal required in combination with the Boss/Sev signal to specify the R7 fate.  相似文献   

17.
During the development of multicellular organisms the fate of individual cells is specified with great precision and reproducibility. Although classical genetic approaches led to the identification of many of the signaling pathways contributing to cell fate specification, they have provided little insight into the mechanisms that ensure robustness and reproducibility. We have used the specification of the R7 photoreceptor cells controlled by the Sevenless receptor tyrosine kinase (Sev) pathway to screen for modulators of pathway activity and to uncover the mechanisms underlying the robustness of cell fate decisions. Here we provide genetic evidence that the Drosophila SOCS36E adaptor protein containing an SH2 domain and a SOCS box acts as an attenuator of Sev signaling. Overexpression of Socs36E strongly suppresses the specification of extra R7 photoreceptor cells in response to constitutive activation of Sev, and loss of Socs36E function suppresses the loss of R7 cells when Sev activity is impaired. In a wild-type background, however, loss and gain of Socs36E function exhibits little effect on R7 specification. We also show that SH2 domain of SOCS36E is essential for this function in inhibiting Sev action and that Socs36E expression is suppressed by high Sev pathway activity. In our model, only the cell able to activate high levels of receptor tyrosine kinase signaling will repress SOCS36E expression, reduce the negative effect on Sev signaling and allow this cell to differentiate into R7. In contrast, the remaining cells fail to receive high signaling, and thus maintain high levels of SOCS36E. This represses residual Sev activity and blocks R7 development. Therefore, Socs36E constitutes a novel partially redundant feedback mechanism that contributes to the robustness of R7 specification. The SOCS family of adaptor proteins may have evolved as modulators of specific signaling pathways that contribute to the robustness and precision of cell fate specification.  相似文献   

18.
19.
Receptor tyrosine kinases (RTKs) direct diverse cellular and developmental responses by stimulating a relatively small number of overlapping signaling pathways. Specificity may be determined by RTK expression patterns or by differential activation of individual signaling pathways. To address this issue we generated knock-in mice in which the extracellular domain of the mouse platelet-derived growth factor alpha receptor (PDGFalphaR) is fused to the cytosolic domain of Drosophila Torso (alpha(Tor)) or the mouse fibroblast growth factor receptor 1 (alpha(FR)). alpha(Tor) homozygous embryos exhibit significant rescue of neural crest and angiogenesis defects normally found in PDGFalphaR-null embryos yet fail to rescue skeletal or extraembryonic defects. This phenotype was associated with the ability of alpha(Tor) to stimulate the mitogen-activated protein (MAP) kinase pathway to near wild-type levels but failure to completely activate other pathways, such as phosphatidylinositol (PI) 3-kinase. The alpha(FR) chimeric receptor fails to rescue any aspect of the PDGFalphaR-null phenotype. Instead, alpha(FR) expression leads to a gain-of-function phenotype highlighted by ectopic bone development. The alpha(FR) phenotype was associated with a failure to limit MAP kinase signaling and to engage significant PI3-kinase response. These results suggest that precise regulation of divergent downstream signaling pathways is critical for specification of RTK function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号