首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The role of gibberellins (GAs) in the regulation of shoot elongation is well established but the phytohormonal control of dry-matter production is poorly understood. In the present study, shoot elongation and dry-matter production were resolved by growing Brassica napus L. seedlings under five light intensities (photon flux densities) ranging from 25 to 500 μmol m−2 s−1. Under low light, plants were tall but produced little dry weight; as light intensity was increased, plants were progressively shorter but had increasing dry weights. Endogenous GAs in stems of 16- and 17-d-old plants were analyzed by gas chromatography-selected ion monitoring with [2H2] internal standards. The contents of GAs increased dramatically with decreasing light intensity: GA1, GA3, GA8 and GA20 were 62, 15, 16 and 32 times higher, respectively, under the lowest versus highest light intensities. Gibberellin A19 was not measured at 25 μmol m−2 s−1 but was 9␣times greater in the 75 compared to 500 μmol m−2 s−1 treatment. Shoot and hypocotyl lengths were closely positively correlated with (log) GA concentration (for example: r 2 = 0.93 for GA1 and hypocotyl length) but shoot dry matter was negatively correlated with GA concentration. The application of gibberellic acid (GA3) produced elongation of plants grown under high light, indication that their low level of endogenous GA was limiting shoot elongation. Although endogenous GA20 showed the greatest influence of light treatment, metabolism of [3H]GA20 and of [3H]GA1 was only slightly influenced by light intensity, suggesting that neither 2β- nor 3β-hydroxylation were points of metabolic regulation. The results of this study indicate that GAs control shoot elongation but are not directly involved in the regulation of shoot dry weight in Brassica. The study also suggests a role of GAs in photomorphogenesis, serving as an intermediate between light condition and shoot elongation response. Received: 18 June 1998 / Accepted: 29 July 1998  相似文献   

2.
The role of gibberellin (GA) and ethylene in submergence-induced petiole elongation was studied in two species of the genus Rumex. Analysis of endogenous GAs in the flooding-tolerant Rumex palustris Sm. and the intolerant Rumex acetosa L. by gas chromatography-mass spectrometry showed for both species the presence of GA1, GA4, GA9, GA19, GA20 and GA53. Gas chromatography-mass spectrometry analysis of R. palustris petiole tissue of submerged plants showed an increase in levels of 13-OH GAs, especially GA1, compared with drained plants. This effect could be mimicked by application of 5 μL L−1 ethylene. In R. acetosa, no differences between levels of GAs in drained or submerged plants were found. In R. palustris, both submergence and ethylene treatment sensitized petioles to exogenous gibberellic acid (GA3). In R. acetosa the effect was opposite, i.e. submergence and ethylene de-sensitized petioles to GA3. Our results demonstrate the dual effect of ethylene in the submergence response related to flooding tolerance, i.e. in the flooding-tolerant R. palustris ethylene causes an increased concentration of and sensitivity to GA with respect to petiole elongation while in the intolerant R. acetosa ethylene reduces growth independent of GAs. Received: 5 November 1996 / Accepted: 8 February 1997  相似文献   

3.
Gibberellins A1 and A3 are the major physiologically active gibberellins (GAs) present in young fruit of pea (Pisum sativum L.). The relative importance of these GAs in controlling fruit growth and their biosynthetic origins were investigated in cv. Alaska. In addition, the non-13-hydroxylated active GAs, GA4 and GA7, were identified for the first time in young seeds harvested 4 d after anthesis, although they are minor components and are not expected to play major physiological roles. The GA1 content is maximal in seeds and pods at 6 d after anthesis, the time of highest growth-rate of the pod (Garcia-Martinez et al. 1991, Planta 184: 53–60), whereas gibberellic acid (GA3), which is present at high levels in seeds 4–8 d after anthesis, has very low abundance in pods. Gibberellins A19, A20 and A29 are most concentrated in seeds at, or shortly after, anthesis and their abundance declines rapidly with development, concomitant with the sharp increase in GA1 and GA3 content. Application of GA1 or GA3 to the leaf subtending an emasculated flower stimulated parthenocarpic fruit development. Measurement of the GA content of the pods at 4 d after anthesis indicated that only 0.002–0.5% of the applied GA was transported to the fruit, depending on dose. There was a linear relationship between GA1 content and pod weight up to about 2 ng · (g FW)−1, whereas no such correlation existed for GA3 content. The concentration of endogenous GA1 in pods from pollinated ovaries is just sufficient to give the maximum growth response. It is concluded that GA1, but not GA3, controls pod growth in pea; GA3 may be involved in early seed development. The distribution of GAs within the seeds at 4 d post anthesis was also investigated. Most of the GA1, GA8, GA19, GA20 and GA29 was present in the testa, whereas GA3 was distributed equally between testa and endosperm and GA4 was localised mainly in the endosperm. Of the GAs analysed, only GA3 and GA20 were detected in the embryo. Metabolism experiments with intact tissues and cell-free fractions indicated compartmentation of GA biosynthesis within the seed. Using 14C-labelled GA12, GA9, 2,3-didehydroGA9 and GA20 as substrates, the testa was shown to contain 13-hydroxylase and 20-oxidase activities, the endosperm, 3β-hydroxylase and 20-oxidase activities. Both tissues also produced 16,17-dihydrodiols. However, GA1 and GA3 were not obtained as products and it is unlikely that they are formed via the early 13-hydroxylation pathway. [14C]gibberellin A12, applied to the inside surface of pods in situ, was metabolised to GA19, GA20, GA29, GA29-catabolite, GA81 and GA97, but GA1 was not detected. Gibberellin A20 was metabolised by this tissue to GA29 and GA29-catabolite. Received: 23 July 1996 / Accepted: 2 September 1996  相似文献   

4.
Both hypocotyl and root growth of sunflower (Helianthus annuus) were examined in response to a range of narrow-band width light treatments. Changes in two growth-regulating hormones, ethylene and gibberellins (GAs) were followed in an attempt to better understand the interaction of light and hormonal signaling in the growth of these two important plant organs. Hydroponically-grown 6-day-old sunflower seedlings had significantly elongated hypocotyls and primary roots when grown under far-red (FR) light produced by light emitting diodes (LEDs), compared to narrow-band red (R) and blue (B) light. However, hypocotyl and primary root lengths of seedlings given FR light were still shorter than was seen for dark-grown seedlings. Light treatment in general (compared to dark) increased lateral root formation and FR light induced massive lateral root formation, relative to treatment with R or B light. Levels of ethylene evolution (roots and hypocotyls) and concentrations of endogenous GAs (hypocotyls) were assessed from both 6-day-old sunflower plants either grown in the dark, or treated with FR, R or B light. Both R and B light had similar effects on hypocotyl and root growth as well as on ethylene and on hypocotyl GA levels. Dark treatment resulted in the highest ethylene levels, whereas FR treatment significantly reduced ethylene evolution for both hypocotyls and roots. R- and B-light treatments elevated ethylene evolution relative to FR light. Endogenous GA53 and GA19 levels in hypocotyls were significantly higher and GA44, GA20 and GA1 levels significantly lower, for dark and FR light treatments compared to R and B light-treatments. The patterns seen for changes in GA concentrations indicate FR-, R- and B-light-mediated effects [differences] in the metabolism of the early C20 GAs, GA53 → GA44 → GA19. Surprisingly, GA20, GA1 and GA8 levels in hypocotyls were very much reduced by treatment of the plants with FR light, relative to B and R-light treatments, e.g. the increased hypocotyl elongation induced by FR light was correlated with reduced levels of all three of the downstream C19 GAs. The best explanation, albeit speculative, is that a more rapid metabolism, i.e. GA20 → GA1 → GA8 → GA8 conjugates occurs under FR light. Although this study provided no evidence that elevated ethylene evolution by roots or hypocotyls of sunflower is controlling growth via endogenous GA biosynthesis, there are differences between soil-grown and hydroponically-grown sunflower seedlings with regard to trends seen for hypocotyl GA concentrations and both root and hypocotyl ethylene evolution in response to narrow band width R and FR light signaling.  相似文献   

5.
S. P. C. Groot  C. M. Karssen 《Planta》1987,171(4):525-531
The germination of seeds of tomato [Lycopersicon esculentum (L.) Mill.] cv. Moneymaker has been compared with that of seeds of the gibberellin-deficient dwarf-mutant line ga-1, induced in the same genetic background. Germination of tomato seeds was absolutely dependent on the presence of either endogenous or exogenous gibberellins (GAs). Gibberellin A4+7 was 1000-fold more active than commercial gibberellic acid in inducing germination of the ga-1 seeds. Red light, a preincubation at 2°C, and ethylene did not stimulate germination of ga-1 seeds in the absence of GA4+7; however, fusicoccin did stimulate germination independently. Removal of the endosperm and testa layers opposite the radicle tip caused germination of ga-1 seeds in water. The seedlings and plants that develop from the detipped ga-1 seeds exhibited the extreme dwarfy phenotype that is normal to this genotype. Measurements of the mechanical resistance of the surrounding layers showed that the major action of GAs was directed to the weakening of the endosperm cells around the radicle tip. In wild-type seeds this weakening occurred in water before radicle protrusion. In ga-1 seeds a similar event was dependent on GA4+7, while fusicoccin also had some activity. Simultaneous incubation of de-embryonated endosperms and isolated axes showed that wild-type embryos contain and endosperm-weakening factor that is absent in ga-1 axes and is probably a GA. Thus, an endogenous GA facilitates germination in tomato seeds by weakening the mechanical restraint of the endosperm cells to permit radicle protrusion.Abbreviations GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

6.
The role of gibberellins (GAs) during germination and early seedling growth is examined by following the metabolism and transport of radiolabeled GAs in cotyledon, shoot, and root tissues of pea (Pisum sativum L.) using an aseptic culture system. Mature pea seeds have significant endogenous GA20 levels that fall during germination and early seedling growth, a period when the seedling develops the capacity to transport GA20 from the cotyledon to the shoot and root of the seedling. Even though cotyledons at 0–2 days after imbibition have appreciable amounts of GA20, the cotyledons retain the ability to metabolize labeled GA19 to GA20 and express significant levels of PsGA20ox2 message (which encodes a GA biosynthesis enzyme, GA 20-oxidase). The large pool of cotyledonary GA20 likely provides substrate for GA1 synthesis in the cotyledons during germination, as well as for shoots and roots during early seedling growth. The shoots and roots express GA metabolism genes (PsGA3ox genes which encode GA 3-oxidases for synthesis of bioactive GA1, and PsGA2ox genes which encode GA 2-oxidases for deactivation of GAs to GA29 and GA8), and they develop the capacity to metabolize GAs as necessary for seedling establishment. Auxins also show an interesting pattern during early seedling growth, with higher levels of 4-chloro-indole-3-acetic acid (4-Cl-IAA) in mature seeds and higher levels of indole-3-acetic acid (IAA) in young root and shoot tissues. This suggests a changing role for auxins during early seedling development.  相似文献   

7.
Shoot elongation of Hancornia speciosa, an endangered tree from the Brazilian savannah “Cerrado”, is very slow, thus limiting nursery production of plants. Gibberellins (GAs) A1, A3, and A5, and two inhibitors of GA biosynthesis, trinexapac-ethyl and ancymidol were applied to shoots of Hancornia seedlings. GA1 and GA3 significantly stimulated shoot elongation, while GA5 had no significant effect. Trinexapac-ethyl and ancymidol, both at 100 μg per seedling, inhibited shoot elongation up to 45 days after treatment, though the effect was statistically significant only for ancymidol. Somewhat surprisingly, exogenous GA3 more effectively stimulated shoot elongation in SD-grown plants, than in LD-grown plants. The results from exogenous application of GAs and inhibitors of GA biosynthesis imply that Hancornia shoot growth is controlled by GAs, and that level of endogenous growth-active GAs is likely to be the limiting factor for shoot elongation in Hancornia. Application of GAs thus offer a practical method for nursery production of Hancornia seedlings for outplanting into the field.  相似文献   

8.
Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects   总被引:9,自引:0,他引:9  
Gibberellins (GAs) are a large family of isoprenoid plant hormones, some of which are bioactive growth regulators, controlling seed germination, stem elongation, and flowering. The rice pathogen Gibberella fujikuroi (mating population C) is able to produce large amounts of GAs, especially the bioactive compounds gibberellic acid (GA3) and its precursors, GA4 and GA7. The main steps of the biosynthetic pathway have long been established from the identification of intermediates in wild-type G. fujikuroi and mutant strains. However, the genetics of the fungus have been rather under-developed, and molecular genetic studies of the GA pathway started just recently. The progress in researching GA biosynthesis in the last 2 years resulted primarily from development of the molecular tools, e.g. transformation systems for the fungus, and cloning the genes encoding GA biosynthesis enzymes, such as the bifunctional ent-copalyl diphosphate/kaurene synthase and several cytochrome P450 monooxygenases. The availability of these genes opened new horizons both for detailed study of the pathway and the regulation mechanisms at the molecular level, and for modern strain improvement programs. This review gives a short overview of the well-known physiological and biochemical studies and concentrates mainly on the new molecular genetic data from GA research, including new information on the regulation of GA biosynthesis. Received: 15 February 1999 / Received revision: 16 April 1999 / Accepted: 16 April 1999  相似文献   

9.
Tip growth of plant cells has been suggested to be regulated by a tip-focused gradient in cytosolic calcium concentration ([Ca2+]c). However, whether this gradient orients apical growth or follows the driving force for this process remains unknown. Using localized photoactivation of the caged calcium ionophore Br-A23187 we have been able to artificially generate an asymmetrical calcium influx across the root hair tip. This led to a change in the direction of tip growth towards the high point of the new [Ca2+]c gradient. Such reorientation of growth was transient and there was a return to the original direction within 15 min. Root hairs forced to change the direction of their growth by placing a mechanical obstacle in their path stopped, reoriented growth to the side, and grew past the mechanical blockage. However, as soon as the growing tip had cleared the obstacle, growth returned to the original direction. Confocal ratio imaging revealed that a tip-focused [Ca2+]c gradient was always centered at the site of active growth. When the root hair changed direction the gradient also reoriented, and when growth returned to the original direction, so did the [Ca2+]c gradient. This normal direction of apical growth of Arabidopsis thaliana (L.) Heynh. root hairs was found to be at a fixed angle from the root of 85 ± 6.7 degrees. In contrast, Tradescantia virginiana (L.) pollen tubes that were induced to reorient by touch or localized activation of the caged ionophore, did not return to the original growth direction, but continued to elongate in their new orientation. These results suggest that the tip-focused [Ca2+]c gradient is an important factor in localizing growth of the elongating root hair and pollen tube to the apex. However, it is not the primary determinant of the direction of elongation in root hairs, suggesting that other information from the root is acting to continuously reset the growth direction away from the root surface. Received: 22 April 1997 / Accepted: 14 May 1997  相似文献   

10.
Two late stages [days 35 and 40 after pollination (DAP)] in zygotic embryo (ZE) development of Brassica napus were utilized to quantify, by the stable isotope-labeled dilution method, levels of “free” and “aglycone” gibberellins (GAs), as well as abscisic acid (ABA), during the programmed dehydration of the seed. GAs from both the early 13 hydroxylation and early non-hydroxylation pathways were present in these ZEs of B napus. Between 35 and 40 DAP endogenous ABA dropped precipitously (almost 30-fold) and this drop in ABA was accompanied by a significant reduction in levels of GA1 and even in levels of the inactive GA catabolites, GA8 and GA29. Levels of GA4 and putative GA85 also dropped appreciably, though not significantly. In contrast, the levels of GA20 and GA9 (the immediate precursors of GA1 and GA4, respectively) did not change in the ZEs during this transition. A fungal-derived cellulase was used to hydrolyze the highly water-soluble fraction, which will contain GA conjugates. Relatively high levels of several GAs (GA9, GA20) were thus quantified after hydrolysis as the aglycones, e.g., 56 and 25 ng/g DW of GA20 and 23 and 5 ng/g DW, of GA9, respectively at DAP 35 and DAP 40. Other GAs found after hydrolysis of the highly water-soluble fraction remained relatively constant between 35 and 40 DAP. An exception was the putative GA85 aglycone, which increased sixfold (free GA85 decreased by ca. half). The transition to the dry seed stage for ZEs of B. napus is thus accompanied not only by the expected reduction in ABA, but also by reduced levels of many “free” GAs, especially the bioactive, 3β-hydroxylated GAs. In contrast, levels of 3-deoxy GAs remain relatively high, implying a partial block in the 3β-hydroxylation “activation” step of GA biosynthesis.  相似文献   

11.
Lei Ding  Jian-Kang Zhu 《Planta》1997,203(3):289-294
Arabinogalactan-proteins (AGPs) are abundant plant proteoglycans that react with (β-d-Glc)3 but not (β-d-Man)3 Yariv reagent. We report here that treatment with (β-d-Glc)3 Yariv reagent caused inhibition of root growth of Arabidopsis thaliana (L.) Heynh. seedlings. Moreover, the treated roots exhibited numerous bulging epidermal cells. Treatment with (β-d-Man)3 Yariv reagent did not have any such effects. These results indicate a role for AGPs in root growth and control of epidermal cell expansion. Because treatment with (β-d-Glc)3 Yariv reagent phenocopies the reb1 (root epidermal cell bulging) mutant of Arabidopsis, AGPs were extracted from the reb1-1 mutant and compared with those of the wild type. The reb1-1 roots contained an approximately 30% lower level of AGPs than the wild type. More importantly, while the profile of AGPs from wild-type roots showed two major peaks upon crossed electrophoresis, the profile of AGPs from reb1-1 roots exhibited only one of the major peaks. Therefore, the reb1 phenotype appears to be a result of defective or missing root AGPs. Taken together, this pharmacological and genetic evidence strongly indicates a function of AGPs in the control of root epidermal cell expansion. Received: 13 February 1997 / Accepted: 1 April 1997  相似文献   

12.
CCC, uniconazol, ancymidol, prohexadione-calcium (BX-112), and CGA 163′935, which represent three groups of gibberellin (GA) biosynthesis inhibitors, were applied as a soil drench to Sorghum bicolor cultivars 58M (phyB-1, phytochrome B-deficient mutant) and 90M (phyB-2, equivalent phenotypically to wild type, PHYB, except for small differences in flowering dates). The inhibitors that block steps before GA12 (CCC, uniconazol, and ancymidol) lowered the concentrations of all endogenous early-C13α-hydroxylation pathway GAs found in sorghum: GA12, GA53, GA44, GA19, GA20, GA1, and GA8. In contrast, the inhibitors that block the conversion of GA20→ GA1, (CGA 163′935 and BX-112) drastically reduced GA1 and GA8 levels, but they either did not change or caused accumulation of intermediates from GA12 to GA20. Combinations of pre-GA12 inhibitors and GA3 plus GA1 strongly reduced GAs other than GA1 and GA3. Each of these compounds inhibited shoot growth in both cultivars and delayed floral initiation in 90M. Floral initiation of 58M was also delayed by CCC, uniconazol, and ancymidol but not by CGA 163`935 and BX-112. This separation of shoot elongation from floral initiation in sorghum is novel. Both inhibition of shoot growth and delayed floral initiation were almost completely relieved by a mixture of GA3 and GA1 in both 58M and 90M. This observation, plus the much lower levels of endogenous GA3 than of GA1 observed in these experiments, implies that GA1 is the major endogenous GA active in shoot elongation. CGA 163′935 and BX-112 also failed to promote tillering in 58M, whereas inhibitors active before GA12 did so. The possibility that the GA20→ GA1 inhibitors fail to block flowering and promote tillering in 58M because biosynthetic intermediates between GA12 and GA20 accumulate and/or because 58M is altered in GA metabolism in this same region of the biosynthetic pathway is discussed. Received April 7, 1998; accepted July 31, 1998  相似文献   

13.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

14.
Summary The content of endogenous gibberellin (GA)-like substances of roots and root nodules of SOya, and GA production byRhizobium japonicum cultures, were investigated by a combined thin layer chromatographic (TLC)-dwarf pea epicotyl bioassay technique. GAs were more concentrated in root nodules than in the roots, totalling 1.34 and 0.16 nM GA3 equivalents g−1 dry wt. respectively. GA production byR. japonicum cultures was demonstrated (1.00 nM GA3 equivalentsl −1) and comparison of the GA components of plant and bacterial culture medium extracts, suggested that rhizobial GA production may contribute to the nodule GA content. Cis-trans abscisic acid (ABA) was identified in root and nodule extracts by TLC-gas liquid chromatography (GLC), and amounted to 0.18 and 2.21 nM g−1 dry wt. respectively, whereas 0.30 and 4.63 nM ABA equivalents g−1 dry wt. were detected by a TLC-wheat embryo bioassay technique. ABA was not detected in extracts of bacterial cultures.  相似文献   

15.
Similar ranges of gibberellins (GAs) were detected by high-performance liquid chromatography (HPLC)-immunoassay procedures in ten cultures of wild-type and mutant strains of Rhizobium phaseoli. The major GAs excreted into the culture medium were GA1 and GA4. These identifications were confirmed by combined gas chromatographymass spectrometry. The HPLC-immunoassays also detected smaller amounts of GA9- as well as GA20-like compounds, the latter being present in some but not all cultures. In addition to GAs, all strains excreted indole-3-acetic acid (IAA) but there was no obvious relationship between the amounts of GA and IAA that accumulated. The Rhizobium strains studied included nod and fix mutants, making it unlikely that the IAA- and GA-biosynthesis genes are closely linked to the genes for nodulation and nitrogen fixation.The HPLC-immunoassay analyses showed also that nodules and non-nodulated roots of Phaseolus vulgaris L. contained similar spectra of GAs to R. phaseoli culture media. The GA pools in roots and nodules were of similar size, indicating that Rhizobium does not make a major contribution to the GA content of the infected tissue.Abbreviations EIA enzyme immunoassay - GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - Me methyl ester - RIA radioimmunoassay - TLC thin-layer chromatography  相似文献   

16.
 Hairy roots of Panax ginseng were obtained after root disks were infected with wild-type strain Agrobacterium rhizogenes 15834. Three lines of hairy roots with different pigmentation were selected. Embryogenic callus was induced on Murashige and Skoog medium containing 1.0 mg/l 2,4-D. The frequency of embryogenic callus formation was 37.4% in a line with red pigmentation. Somatic embryo development from embryogenic callus was efficiently achieved by lowering the concentration of 2,4-D (0.5 mg/l). After the germination of somatic embryos on medium with 10 mg/l GA3, the embryos were transferred to 1/2-MS medium without GA3. The transformed ginseng plantlets had an actively growing root system with abundant lateral roots. The phenotypical alteration of transformed ginseng plants might be valuable character for increasing root yield. Received: 27 March 1999 / Revision received: 18 May 1999 / Accepted 8 July 1999  相似文献   

17.
The gibberellin (GA) content of barley (Hordeum vulgare L.) cv. Triumph was analysed by full scan gas chromatography-mass spectrometry. Developing grain contained several di-, tri-, and tetra-hydroxylated GAs, with the most abundant ones being hydroxylated at C-2, C-3, C-12β, and/or C-18. In contrast, the only GAs to be detected in shoots of 9-day old dark- and light-grown seedlings of Triumph were 13-hydroxylated C19-GAs, namely GA1, GA8, GA20, and GA29, (all of which are components of the early 13-hydroxylation GA biosynthetic pathway) and GA3. Feeds of [13C.3H2GA20, confirmed that GA20 is a precursor of GA1, GA8, and GA29 in barley shoots. From these results it is suggested that stem growth of barley, in common with that of several other mono- and dicotyledons, is controlled by GA,. Homozygous gal and gal lines were obtained after backcrossing to Triumph. These were then compared to Triumph with respect to their GA content and response to applied GAs and GA precursors. Shoots of the homozygous gal gal plants contained ca 6-fold less GA1, than Triumph. These plants responded to all ent-kaurenoids and 13-hydroxylated C20- and C19-GAs tested. It is concluded that the gal locus impairs the GA biosynthetic pathway prior to ent-kaurene, most probably at ent-kaurene synthetase. In contrast, shoots of homozygous gal gal line contained ca 10-fold higher levels of GA, than Triumph, but failed to respond to applied GA, or GA3. The gal locus therefore confers insensitivity to both exogenous and endogenous GAs, possibly by perturbing the reception or transduction of the GA1 signal.  相似文献   

18.
The gibberellin (GA) economy of young pea (Pisum sativum L.) fruits was investigated using a range of mutants with altered GA biosynthesis or deactivation. The synthesis mutation lh-2 substantially reduced the content of both GA4 and GA1 in young seeds. Among the other synthesis mutations, ls-1, le-1 and le-3, the largest reduction in seed GA1 content was only 1.7-fold (le-1), while GA4 was not reduced in these mutants, and in fact accumulated in some experiments (compared with the wild type). Mutation sln appeared to block the step GA20 to GA29 in young pods and seeds, but not as strongly as in older seeds. Mutations ls-1, le-1 and le-3 markedly reduced pod GA1 levels, but pod elongation was not affected. After feeds of [13C,3H]GA20 to leaves, the pods contained 13C,3H-labelled GA20, GA1, GA29 and GA81, and the seeds, [13C,3H]GA20 and [13C,3H]GA29. These findings are discussed in relation to recent suggestions regarding the role and origin of GA1 in pea fruits. Received: 6 June 1997 / Accepted: 15 July 1997  相似文献   

19.
Stem elongation and flowering are two processes induced by long-day (LD) treatment in Silene armeria L. Whereas photoperiodic control of stem growth is mediated by gibberellins (GAs), the flowering response cannot be obtained by GA applications. Microscopic observations on early cellular changes in the shoot meristem following LD induction or GA treatment in short days (SD) were combined with GA analyses of stem sections at various distances below the shoot apex. The earliest effects of both LD and GA induction on the subapical meristem were an increase in the number of cells per cell file and a reduction of cell length in the meristematic tissue approx. 1.0–3.0 mm below the shoot apex. Within 8 d after the beginning of LD induction or after GA application, the cells in the subapical meristem were oriented in long files. In induced tips, cellulose deposition occurred mostly in longitudinal walls, indicating that many transverse cell divisions had taken place which, in turn, increased the length of the stem. In contrast to LD induction, GA treatments did not promote the transition from the vegetative to the floral stage. Endogenous GAs were analyzed by selected ion monitoring (SIM), using labeled internal standards, in extracts from transverse sections of the tip at various distances below the apical meristem. In control plants, the levels of the six 13-hydroxy GAs studied (GA53, GA44, GA19, GA20, GA1, and GA8) decreased as the distance from the apical meristem increased. Except for GA53, GA levels were higher in tips of LD-induced plants, particularly in the meristematic zone approx. 0.5–1.5 mm below the apical meristem. In comparison with SD, the highest increase observed was for GA1, the content of which increased 30-fold in the zone 0.5–3.5 mm below the shoot apex. These data indicate a spatial correlation between the accumulation of GA1 and its precursors, and the enhanced mitotic activity which occurs in the subapical meristem of elongating Silene apices.Abbreviations GAn gibberellin An - LD long day(s) - SD short day(s) We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]- gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA, for [13C]GA8, Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility, for advice with mass spectrometry, and Mr. M. Chassagne, I.N.R.A. C.R. Bordeaux, for the photography. This work was supported, in part, by a fellowship from the Spanish Ministry of Agriculture (Instituto Nacional de Investigaciones Agrarias) to M.T., by the U.S. Department of Energy under contract DE-ACO2-76ERO-1338, and by the U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

20.
Applications of the growth promotive gibberellins (GAs) GA4 and 2,2-dimethyl GA4, and of C-16,17 endo-dihydro GA5, which is known to promote flowering while inhibiting stem growth in the long-day grass Lolium temulentum, were made to micropropagated plants of Metrosideros collina cv. Tahiti, a highly ornamental cultivar with an intermittent flowering pattern. Gibberellin A4 and 2,2-dimethyl GA4 stimulated vegetative growth both in elongating shoots, and internodes of shoots developing from buds that were quiescent at the time of GA application. Abscission of the apices of expanding shoots, a feature of mature Metrosideros plants, was inhibited by these GAs, the rejuvenation of micropropagated plantlets being enhanced. However, C-16,17 endo-dihydro GA5 differed from GA4 and 2,2-dimethyl GA4 by having no promotive effects on vegetative growth, and no inhibition of apical abscission. Notwithstanding this contrasting effect on vegetative growth, high doses of GA4 or C-16,17 endo-dihydro GA5 similarly reduced flowering on shoots to which either GA was applied. Reduced flowering in response to applied GAs is common in many woody angiosperms, and in this instance was probably the combined result of abortion of developing floral structures in quiescent buds, and a preferential inhibition of bud break for floral buds relative to vegetative buds, particularly by GA4. Finally, both C-16,17 endo-dihydro GA5 and GA4 strongly inhibited bud break in this woody angiosperm, although GA4 could initially stimulate bud break when applied to vegetative buds close to the expansion stage. The above findings, in toto, highlight the sensitivity of Metrosideros to both classes of GA in a variety of growth and development processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号