首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
王虎  吴玲玲  周立辉  胡妍妍  马小魁 《生态学报》2014,34(11):2907-2915
从陕北地区石油污染土壤中分离鉴定得到两株不动杆菌属(Acinetobacter sp.)的高效石油降解菌A.sp 1和A.sp 2,分别从盐浓度、pH值、氮源、磷源和接种量等因素进行研究以确定其最佳石油降解条件,并进一步通过GC-MS(Gas ChromatographyMass Spectrometer)方法分析其在最佳条件下对原油组分的不同降解性能。结果显示:A.sp 1在盐浓度为1%、pH值为6—7、磷源为KH2PO4和K2HPO4、氮源为尿素和接种量为4%的条件下,最高降解率可达到60%。A.sp 2在盐浓度为1%、pH值为7—9、磷源为KH2PO4和K2HPO4、氮源为硝酸铵和接种量为8%的条件下,最高降解率可达到67%。GC-MS分析结果表明,菌株A.sp 1对石油烃类C21—C25有明显的降解效果,菌株A.sp 2对石油烃类C20—C30的降解效果较好。  相似文献   

2.
We isolated three species of phenanthrene-degrading bacteria from oil-contaminated soils and marine sediment, and assessed the potential use of these bacteria for bioremediation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Based on 16S rDNA sequences, these bacteria were Staphylococcus sp. KW-07 and Pseudomonas sp. CH-11 from soil, and Ochrobactrum sp. CH-19 from the marine sediment. By PCR amplification, catechol 2,3-dioxygenase genes (nahH genes) mediating PAH degradation in the chromosome of Staphylococcus sp. KW-07 and Ochrobactrum sp. CH-19, and in plasmid DNA of Pseudomonas sp. CH-11 were detected. All isolates had a similar optimal growth temperature (25 °C) and optimal growth pH (7.0) in a minimal salt medium (MSM) with 0.1% (w/v) phenanthrene as the sole source of carbon and energy. Pseudomonas sp. CH-11 and Staphylococcus sp. KW-07 degraded 90% of added phenanthrene in 3 days and Ochrobactrum sp. CH-19 degraded 90% of the phenanthrene in 7 days under laboratory batch culture conditions. However, Staphylococcus sp. KW-07 was the most effective among the three strains in degradation of phenanthrene in soil. After inoculation of 1 × 1011 cells of Staphylococcus sp. KW-07, over 90% degradation of 0.1% phenanthrene (0.1 g/100 g soil) was achieved after 1 month at 25 °C. The results collectively suggest that the Staphylococcus sp. KW-07 strain isolated may be useful in bioremediation of PAH-contaminated soils.  相似文献   

3.
Four bacterial strains identified as members of the Acidovorax genus were isolated from two geographically distinct but similarly contaminated soils in North Carolina, USA, characterized, and their genomes sequenced. Their 16S rRNA genes were highly similar to those previously recovered during stable-isotope probing (SIP) of one of the soils with the polycyclic aromatic hydrocarbon (PAH) phenanthrene. Heterotrophic growth of all strains occurred with a number of organic acids, as well as phenanthrene, but no other tested PAHs. Optimal growth occurred aerobically under mesophilic temperature, neutral pH, and low salinity conditions. Predominant fatty acids were C16:1ω7c/C16:1ω6c, C16:0, and C18:1ω7c, and were consistent with the genus. Genomic G + C contents ranged from 63.6 to 64.2%. A combination of whole genome comparisons and physiological analyses indicated that these four strains likely represent a single species within the Acidovorax genus. Chromosomal genes for phenanthrene degradation to phthalate were nearly identical to highly conserved regions in phenanthrene-degrading Delftia, Burkholderia, Alcaligenes, and Massilia species in regions flanked by transposable or extrachromosomal elements. The lower degradation pathway for phenanthrene metabolism was inferred by comparisons to described genes and proteins. The novel species Acidovorax carolinensis sp. nov. is proposed, comprising the four strains described in this study with strain NA3T as the type strain (=LMG 30136, =DSM 105008).  相似文献   

4.
The phenotypic and genotypic characteristics of fourteen human clinical Achromobacter strains representing four genogroups which were delineated by sequence analysis of nusA, eno, rpoB, gltB, lepA, nuoL and nrdA loci, demonstrated that they represent four novel Achromobacter species. The present study also characterized and provided two additional reference strains for Achromobacter ruhlandii and Achromobacter marplatensis, species for which, thus far, only single strains are publicly available, and further validated the use of 2.1% concatenated nusA, eno, rpoB, gltB, lepA, nuoL and nrdA sequence divergence as a threshold value for species delineation in this genus. Finally, although most Achromobacter species can be distinguished by biochemical characteristics, the present study also highlighted considerable phenotypic intraspecies variability and demonstrated that the type strains may be phenotypically poor representatives of the species. We propose to classify the fourteen human clinical strains as Achromobacter mucicolens sp. nov. (with strain LMG 26685T [=CCUG 61961T] as the type strain), Achromobacter animicus sp. nov. (with strain LMG 26690T [=CCUG 61966T] as the type strain), Achromobacter spiritinus sp. nov. (with strain LMG 26692T [=CCUG 61968T] as the type strain), and Achromobacter pulmonis sp. nov. (with strain LMG 26696T [=CCUG 61972T] as the type strain).  相似文献   

5.
The laccase genes lccα, lccβ, lccγ and lccδ encoding four isoenzymes from Trametes versicolor have been cloned and expressed in Pichia pastoris. Biochemical characterization allowed classification of these laccases into two distinct groups: Lccα and Lccβ possessed higher thermal stability, but lower catalytic activity towards 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) compared to Lccγ and Lccδ. Activities of the laccases were quite different as well. Laccase Lccδ showed highest phenolic C-C coupling activity with sinapic acid, but lowest oxidizing activity towards polycyclic aromatic hydrocarbons (PAHs). Highest activity towards PAHs was observed with Lccβ. After 72 h, more than 80% of fluorene, anthracene, acenaphthene and acenaphthylene were oxidized by Lccβ in the presence of ABTS. Investigation of the structural basis of the different activities of the laccases demonstrated the impact of positions 164 and 265 in the substrate binding site on oxidation of PAHs.  相似文献   

6.
The phenotypic and genotypic characteristics of seventeen Achromobacter strains representing MLST genogroups 2, 5, 7 and 14 were examined. Although genogroup 2 and 14 strains shared a DNA–DNA hybridization level of about 70%, the type strains of both genogroups differed in numerous biochemical characteristics and all genogroup 2 and 14 strains could by distinguished by nitrite reduction, denitrification and growth on acetamide. Given the MLST sequence divergence which identified genogroups 2 and 14 as clearly distinct populations, the availability of nrdA sequence analysis as a single locus identification tool for all Achromobacter species and genogroups, and the differential phenotypic characteristics, we propose to formally classify Achromobacter genogroups 2, 5, 7 and 14 as four novel Achromobacter species for which we propose the names Achromobacter insuavis sp. nov. (with strain LMG 26845T [= CCUG 62426T] as the type strain), Achromobacter aegrifaciens sp. nov. (with strain LMG 26852T [= CCUG 62438T] as the type strain), Achromobacter anxifer sp. nov. (with strain LMG 26857T [= CCUG 62444T] as the type strain), and Achromobacter dolens sp. nov. (with strain LMG 26840T [= CCUG 62421T] as the type strain).  相似文献   

7.
The taxonomic positions of five Gram-negative, non-spore-forming and non-motile bacterial strains isolated from the rhizosphere of sand dune plants were examined using a polyphasic approach. The analysis of the 16S rRNA gene sequence indicated that all of the isolates fell into four distinct phylogenetic clusters belonging to the genus Chryseobacterium of the family Flavobacteriaceae. The 16S rRNA gene sequence similarities of isolates to mostly related type strains of Chryseobacterium ranged from 97.5% to 98.5%. All strains contained MK-6 as the predominant menaquinone, and iso-C15:0, iso-C17:0 3-OH and a summed feature of iso-C15:0 2-OH and/or C16:1 ω7c as the dominant fatty acids. Combined phenotypic, genotypic and chemotaxonomic data supported that they represented four novel species in the genus Chryseobacterium, for which the names Chryseobacterium hagamense sp. nov. (type strain RHA2-9T=KCTC 22545T=NBRC 105253T), Chryseobacterium elymi sp. nov. (type strain RHA3-1T=KCTC 22547T=NBRC 105251T), Chryseobacterium lathyri sp. nov. (type strain RBA2-6T=KCTC 22544T=NBRC 105250T), and Chryseobacterium rhizosphaerae sp. nov. (type strain RSB3-1T=KCTC 22548T=NBRC 105248T) are proposed.  相似文献   

8.
Different abandoned industrial areas contaminated by polycyclic aromatic hydrocarbons (PAHs) are present in Slovakia. These environmental burdens are very dangerous to the health of human and environment. The bioremediation, based on the use of hydrocarbons degrading microorganisms, is a promising strategy to sanitize these polluted sites. The aim of this investigation was to assess the bacterial diversity of a PAHs-contaminated soil and to select the potential hydrocarbonoclastic bacteria which can be used for different bioremediation approaches. The bacterial strains were isolated on minimal medium agar supplemented with a mixture of PAHs. Seventy-three isolated strains were grouped by ribosomal interspacer analysis in 15 different clusters and representatives of each cluster were identified by 16S rRNA sequencing. The PAHs degradation abilities of all bacterial isolates were estimated by the 2,6-dichlorophenol indophenol assay and by their growth on minimal broth amended with a mixture of PAHs. Different kinds of strains, members of the genus Pseudomonas, Enterobacter, Bacillus, Arthrobacter, Acinetobacter and Sphingomonas, were isolated from the contaminated soil. Four isolates (Pseudomonas putida, Arthrobacter oxydans, Sphingomonas sp. and S. paucimobilis) showed promising PAHs-degrading abilities and therefore their possible employing in bioremediation strategies.  相似文献   

9.
Nodulation abilities of bacteria in the subclasses Gammaproteobacteria and Betaproteobacteria on black locust (Robinia pseudoacacia) were tested. Pseudomonas sp., Burkholderia sp., Klebsiella sp., and Paenibacillus sp. were isolated from surface-sterilized black locust nodules, but their nodulation ability is unknown. The aims of this study were to determine if these bacteria are symbiotic. The species and genera of the strains were determined by RFLP analysis and DNA sequencing of 16S rRNA gene. Inoculation tests and histological studies revealed that Pseudomonas sp. and Burkholderia sp. formed nodules on black locust and also developed differentiated nodule tissue. Furthermore, a phylogenetic analysis of nodA and a BLASTN analysis of the nodC, nifH, and nifHD genes revealed that these symbiotic genes of Pseudomonas sp. and Burkholderia sp. have high similarities with those of rhizobial species, indicating that the strains acquired the symbiotic genes from rhizobial species in the soil. Therefore, in an actual rhizosphere, bacterial diversity of nodulating legumes may be broader than expected in the Alpha-, Beta-, and Gammaproteobacteria subclasses. The results indicate the importance of horizontal gene transfer for establishing symbiotic interactions in the rhizosphere.  相似文献   

10.
Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L−1 of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low KM values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I50 = 1.4 M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research.  相似文献   

11.
Cycloclasticus sp. strain A5 is able to grow with petroleum polycyclic aromatic hydrocarbons (PAHs), including unsubstituted and substituted naphthalenes, dibenzothiophenes, phenanthrenes, and fluorenes. A set of genes responsible for the degradation of petroleum PAHs was isolated by using the ability of the organism to oxidize indole to indigo. This 10.5-kb DNA fragment was sequenced and found to contain 10 open reading frames (ORFs). Seven ORFs showed homology to previously characterized genes for PAH degradation and were designated phn genes, although the sequence and order of these phn genes were significantly different from the sequence and order of the known PAH-degrading genes. The phnA1, phnA2, phnA3, and phnA4 genes, which encode the α and β subunits of an iron-sulfur protein, a ferredoxin, and a ferredoxin reductase, respectively, were identified as the genes coding for PAH dioxygenase. The phnA4A3 gene cluster was located 3.7 kb downstream of the phnA2 gene. PhnA1 and PhnA2 exhibited moderate (less than 62%) sequence identity to the α and β subunits of other aromatic ring-hydroxylating dioxygenases, but motifs such as the Fe(II)-binding site and the [2Fe-2S] cluster ligands were conserved. Escherichia coli cells possessing the phnA1A2A3A4 genes were able to convert phenanthrene, naphthalene, and methylnaphthalene in addition to the tricyclic heterocycles dibenzofuran and dibenzothiophene to their hydroxylated forms. Significantly, the E. coli cells also transformed biphenyl and diphenylmethane, which are ordinarily the substrates of biphenyl dioxygenases.  相似文献   

12.
13.
Alcohol oxidase (alcohol:oxygen oxidoreductase) was crystallized from a methanolgrown yeast, Pichia sp. The crystalline enzyme is homogenous as judged from polyacrylamide gel electrophoresis. Alcohol oxidase catalyzed the oxidation of short-chain primary alcohols (C1 to C6), substituted primary alcohols (2-chloroethanol, 3-chloro-1-propanol, 4-chlorobutanol, isobutanol), and formaldehyde. The general reaction with an oxidizable substrate is as follows: Primary alcohol + O2 → aldehyde + H2O2 Formaldehyde + O2 → formate + H2O2. Secondary alcohols, tertiary alcohols, cyclic alcohols, aromatic alcohols, and aldehydes (except formaldehyde) were not oxidized. The Km values for methanol and formaldehyde are 0.5 and 3.5 mm, respectively. The stoichiometry of substrate oxidized (alcohol or formaldehyde), oxygen consumed, and product formed (aldehyde or formate) is 1:1:1. The purified enzyme has a molecular weight of 300,000 as determined by gel filtration and a subunit size of 76,000 as determined by sodium dodecyl sulfate-gel electrophoresis, indicating that alcohol oxidase consists of four identical subunits. The purified alcohol oxidase has absorption maxima at 460 and 380 nm which were bleached by the addition of methanol. The prosthetic group of the enzyme was identified as a flavin adenine dinucleotide. Alcohol oxidase activity was inhibited by sulfhydryl reagents (p-chloromercuribenzoate, mercuric chloride, 5,5′-dithiobis-2-nitrobenzoate, iodoacetate) indicating the involvement of sulfhydryl groups(s) in the oxidation of alcohols by alcohol oxidase. Hydrogen peroxide (product of the reaction), 2-aminoethanol (substrate analogue), and cupric sulfate also inhibited alcohol oxidase activity.  相似文献   

14.
In the last two decades, a significant amount of work aimed at studying the ability of the white-rot fungus Coriolopsis rigida strain LPSC no. 232 to degrade lignin, sterols, as well as several hazardous pollutants like dyes and aliphatic and aromatic fractions of crude oil, including polycyclic aromatic hydrocarbons, has been performed. Additionally, C. rigida in association with arbuscular mycorrhizal fungi appears to enhance plant growth, albeit the physiological and molecular bases of this effect remain to be elucidated. C. rigida's ability to degrade lignin and lignin-related compounds and the capacity to transform the aromatic fraction of crude oil in the soil might be partially ascribed to its ligninolytic enzyme system. Two extracellular laccases are the only enzymatic components of its lignin-degrading system. We reviewed the most relevant findings regarding the activity and role of C. rigida LPSC no. 232 and its laccases and discussed the work that remains to be done in order to assess, more precisely, the potential use of this fungus and its extracellular enzymes as a model in several applied processes.  相似文献   

15.
Aims: To characterize polycyclic aromatic hydrocarbon (PAH)‐degrading bacteria from sediments of the Bizerte lagoon, and to determine their ability to resist other pollutants such as antibiotics and heavy metals. Methods and Results: More than 100 strains were isolated for their ability to use fluoranthene as the sole carbon and energy source. Most of them showed antibiotic and heavy metal resistance; 20 representative strains were selected for further analysis. 16S rRNA coding sequences analysis showed that the majority of the selected bacteria (75%) were affiliated to the Gammaproteobacteria. The selected strains also utilized high molecular weight PAHs containing up to four benzene rings and showed different profiles of PAH substrate usage suggesting different PAH degradation pathways. These results are consistent with the fact that nah‐like genes and idoA‐like genes, involved in PAH degradation, were detected in 6 and 1 strains respectively. Conclusions: The Bizerte lagoon, polluted by many human activities, leads to the co‐selection of strains able to cope with multiple contaminants. Significance and Impact of the Study: Polluted areas are often characterized by the concomitant presence of organic pollutants, heavy metals and antibiotics. This study is one of the first showing bacterial strains adapted to multiple contaminants, a promising potential for the development of bioremediation processes.  相似文献   

16.
A new cyclic hexapeptide, cyclo-(Gly-Leu-Val-IIe-Ala-Phe), named bacicyclin (1), was isolated from a marine Bacillus sp. strain associated with Mytilus edulis. The sequences of the amino acid building blocks of the cyclic peptide and its structure were determined by 1D- and 2D-NMR techniques. Marfey’s analysis showed that the amino acid building blocks had L-configuration in all cases except for alanine and phenylalanine, which had D-configuration. Bacicyclin (1) exhibited antibacterial activity against the clinically relevant strains Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentration values of 8 and 12?µM, respectively. These results demonstrate the potential of marine bacteria as a promising source for the discovery of new antibiotics.  相似文献   

17.
Triphenylmethane dyes are considered to be one of the most recalcitrant pollutants in the environment. Malachite Green (MG) was successfully removed from aqueous solution by Pseudomonas sp. DY1 immobilization with Aspergillus oryzae. Inhibition test in the presence of sodium azide and nystatin indicated that A. oryzae was a natural immobilization reagent, and removal of MG by the immobilized cell pellets was attributed to the biodegradation by Pseudomonas sp. DY1. Optimum conditions of immobilization for maximum biodegradation were obtained using Taguchi design at 37 °C, inoculation size of Pseudomonas sp. DY1 (dry cell mass) 0.01 g, of A. oryzae (spore number) 1.0 × 109, initial pH 6.5. Decolorization and biodegradation of MG by immobilized pellets under optimum conditions were 99.5% and 93.3%, respectively. Immobilized pellets exhibited more than 96% decolorization after 16 days in batch condition, indicating it had stable and high biodegradation capabilities when immobilized for long-term operation.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic organic pollutants widely distributed in terrestrial and aquatic environments. In the present work, 2 colorimetric assays for laccase-catalyzed degradation of PAHs were developed based on studies of the oxidation of 12 aromatic hydrocarbons by fungal laccases from Trametes versicolor and Myceliophthora thermophila. Using a sodium borohydride water-soluble solution, the authors could reduce the single product of laccase-catalyzed anthracene biooxidation into the orange-colored 9,10-anthrahydroquinone, which is quantifiable spectrophotometrically. An assay using polymeric dye (Poly R-478) as a surrogate substrate for lignin degradation by laccase in the presence of mediator is also presented. The decolorization of Poly R-478 was correlated to the oxidation of PAHs mediated by laccases. This demonstrates that a ligninolytic indicator such as Poly R-478 can be used to screen for PAH-degrading laccases; it will also be useful in screening mutant libraries in directed evolution experiments. Poly R-478 is stable and readily soluble. It has a high extinction coefficient and low toxicity toward white rot fungi, yeast, and bacteria, which allow its application in a solid-phase assay format.  相似文献   

19.
The soil microbial population of a coke oven site was investigated in order to evaluate its potential for bioremediation. The study was carried out in soil samples with distinct polynuclear aromatic hydrocarbon (PAH) contamination levels, comparing the population profiles constituted by total heterotrophic and PAH-utilizing strains. Isolation of degrading strains was performed with phenanthrene or pyrene as sole carbon sources. The ability to degrade other PAHs, such as anthracene, fluorene and fluoranthene was also investigated. The results showed a reduction of 30% in species diversity and microbial density drops one order of magnitude in contaminated samples. Furthermore, the number of PAH-utilizing colonies was higher in the contaminated area and about 20% of the isolates were able to degrade phenanthrene and pyrene, while this value decreased to 0.15% in uncontaminated samples. Three PAH-degrader strains were identified as: CDC gr. IV C-2, Aeromonas sp. and Pseudomonas vesicularis. The ability of these strains to degrade other PAHs was also investigated.  相似文献   

20.
Pyrene is a regulated pollutant at sites contaminated with polycyclic aromatic hydrocarbons (PAH). It is mineralized by some bacteria but is also transformed to nonmineral products by a variety of other PAH-degrading bacteria. We examined the formation of such products by four bacterial strains and identified and further characterized the most apparently significant of these metabolites. Pseudomonas stutzeri strain P16 and Bacillus cereus strain P21 transformed pyrene primarily to cis-4,5-dihydro-4,5-dihydroxypyrene (PYRdHD), the first intermediate in the known pathway for aerobic bacterial mineralization of pyrene. Sphingomonas yanoikuyae strain R1 transformed pyrene to PYRdHD and pyrene-4,5-dione (PYRQ). Both strain R1 and Pseudomonas saccharophila strain P15 transform PYRdHD to PYRQ nearly stoichiometrically, suggesting that PYRQ is formed by oxidation of PYRdHD to 4,5-dihydroxypyrene and subsequent autoxidation of this metabolite. A pyrene-mineralizing organism, Mycobacterium strain PYR-1, also transforms PYRdHD to PYRQ at high initial concentrations of PYRdHD. However, strain PYR-1 is able to use both PYRdHD and PYRQ as growth substrates. PYRdHD strongly inhibited phenanthrene degradation by strains P15 and R1 but had only a minor effect on strains P16 and P21. At their aqueous saturation concentrations, both PYRdHD and PYRQ severely inhibited benzo[a]pyrene mineralization by strains P15 and R1. Collectively, these findings suggest that products derived from pyrene transformation have the potential to accumulate in PAH-contaminated systems and that such products can significantly influence the removal of other PAH. However, these products may be susceptible to subsequent degradation by organisms able to metabolize pyrene more extensively if such organisms are present in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号