首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: τ protein kinase I (TPKI) phosphorylates τ and forms paired helical filament epitopes in vitro. We studied temporal expression and histochemical distribution of τ phosphoserine epitopes at sites known to be phosphorylated by TPKI. Antibodies directed against phosphorylated Ser199 (anti-PS 199) or phosphorylated Ser396 (C5 or anti-PS 396) were used. TPKI is abundantly expressed in the young rat brain and the highly phosphorylated juvenile form of τ occurs in the same period. The activity peak of TPKI coincided with the high level of phosphorylation of Ser199 and Ser396 in juvenile τ at around postnatal day 8. By immunohistochemistry on the hippocampus and neocortex of 3–11-day-old rats, phosphorylated Ser396 was found in young axonal tracts and neuropil, where TPKI immunoreactivity was also detected. TPKI and phospho-Ser199 immunoreactivities were also detected in the perikarya of pyramidal neurons. TPKI immunoreactivity had declined to a low level and phosphorylated serine immunoreactivities were undetectable in the sections of adult brain. These findings implicate TPKI in paired helical filament-like phosphorylation of juvenile form of τ in the developing brain.  相似文献   

2.
Abstract: Antibody Ab262 was raised against a synthetic τ peptide (SKIGSTENLK, amino acids 258–267 of τ, termed Ser262 peptide). The antibody was more reactive with Ser262 peptide and unphosphorylated τ than a related phosphopeptide [SKIGS(P)TENLK, termed P-Ser262 peptide] and τ phosphorylated by a partially purified kinase, glycogen synthase kinase (GSK) 3β. Ab262 reacted poorly with a peptide having the sequence DRVQSKIGSLD (amino acids 348–358). Treatment of P-Ser262 peptide or GSK 3β phosphorylated τ with alkaline phosphatase increased Ab262 immunoreactivity, indicating that Ab262 is a reagent useful for studying τ phosphorylation at the Ser262 residue. The Ab262 immunoreactivity was detected in τ from normal brains and Alzheimer paired helical filament (PHF-τ) and in PHFs. Alkaline phosphatase treatment had no effect on the Ab262 immunoreactivity of normal τ and PHF-τ but altered the Tau-1 and PHF-1 immunoreactivities. τ proteins from rat brains at 3 and 8 h postmortem exhibited 5 and 19%, respectively, more Ab262 immunoreactivity than τ from fresh tissues. In comparison, rat τ at 8 h postmortem was 40% more immunoreactive with Tau-1. The results suggest that Ser262 is not a major phosphorylation site in vivo. Moreover, there is little or no difference between PHF-τ and normal τ in the extent of phosphorylation at Ser262.  相似文献   

3.
Abstract: Neurofibrillary tangles, one of the major pathological hallmarks of Alzheimer-diseased brains, consist primarily of aggregated paired helical filaments (PHFs) of hyperphosphorylated τ protein. τ from normal brain and especially from foetal brain is also phosphorylated on some of the sites phosphorylated in PHFs, mainly at serines or threonines followed by prolines. A number of protein kinases can phosphorylate τ in vitro; those that require or accept prolines include GSK3 and members of the mitogen-activated protein (MAP) kinase family, ERK1, ERK2, and SAP kinase-β/JNK. In this report, we show that another member of the MAP kinase family, the stress-activated kinase p38/RK, can phosphorylate τ in vitro. Western blots with phosphorylation-sensitive antibodies showed that p38, like ERK2 and SAP kinase-β/JNK, phosphorylated τ at sites found phosphorylated physiologically (Thr181, Ser202, Thr205, and Ser396) and also at Ser422, which is phosphorylated in neurofibrillary tangles but not in normal adult or foetal brain. These findings support the possibility that cellular stress might contribute to τ hyperphosphorylation during the formation of PHFs, and hence, to the development of τ pathology.  相似文献   

4.
Abstract: Abnormally hyperphosphorylated τ is the major protein subunit of paired helical filaments in Alzheimer brains. We have examined its site-specific dephosphorylation by different protein phosphatases. Dephosphorylation of τ was monitored by its interaction with several phosphorylation-dependent antibodies. Alzheimer τ was dephosphorylated by brain protein phosphatase-2B at the abnormally phosphorylated sites Ser46, Ser199, Ser202, Ser235, Ser396, and Ser404, and its relative mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis shifted to that of normal τ. Protein phosphatases-1 and -2A could dephosphorylate only some of the above six phosphorylation sites. These results indicate that protein phosphatase-2B might be involved in hyperphosphorylation of τ in Alzheimer's disease.  相似文献   

5.
Abstract: A proportion of the neuronal microtubule-associated protein (MAP) τ is highly phosphorylated in foetal and adult brain, whereas the majority of τ in the neurofibrillary tangles of Alzheimer's patients is hyperphosphorylated; many of the phosphorylation sites are serines or threonines followed by prolines. Several kinases phosphorylate τ at such sites in vitro. We have now shown that purified recombinant stress-activated protein kinase/c-Jun N-terminal kinase, a proline-directed kinase of the MAP kinase extended family, phosphorylates recombinant τ in vitro on threonine and serine residues. Western blots using antibodies to phosphorylation-dependent τ epitopes demonstrated that phosphorylation occurs in both of the main phosphorylated regions of τ protein. Unlike glycogen synthase kinase-3, the c-Jun N-terminal kinase readily phosphorylates Thr205 and Ser422, which are more highly phosphorylated in Alzheimer τ than in foetal or adult τ. Glycogen synthase kinase-3 may preferentially phosphorylate the sites found physiologically, in foetal and to a smaller extent in adult τ, whereas stress-activated/c-Jun N-terminal kinase and/or other members of the extended MAP kinase family may be responsible for pathological proline-directed phosphorylations. Inflammatory processes in Alzheimer brain might therefore contribute directly to the pathological formation of the hyperphosphorylated τ found in neurofibrillary tangles.  相似文献   

6.
7.
Abstract: Microtubule-associated protein τ is abnormally hyperphosphorylated and aggregated in affected neurons of Alzheimer disease brain. This hyperphosphorylated τ can be dephosphorylated at some of the abnormal phosphorylated sites by purified protein phosphatase-1, 2A, and 2B in vitro. In the present study, we have developed an assay to measure protein phosphatase activity toward τ-1 sites (Ser199/Ser202) using the hyperphosphorylated τ isolated from Alzheimer disease brain as substrate. Using this assay, we have identified that in normal brain, protein phosphatase-2A and 2B and, to a lesser extent, 1 are involved in the dephosphorylation of τ. The K m values of dephosphorylation of the hyperphosphorylated τ by protein phosphatase-2A and 2B are similar. The τ phosphatase activity is decreased by ∼30% in brain of Alzheimer disease patients compared with those of age-matched controls. These findings suggest that a defect of protein phosphatase could be the cause of the abnormal hyperphosphorylation of τ in Alzheimer disease.  相似文献   

8.
Abstract: The microtubule-associated protein τ plays an important role in the dynamics of microtubule assembly necessary for axonal growth and neurite plasticity. Ischemia disrupts the neuronal cytoskeleton both by promoting proteolysis of its components and by affecting kinase and phosphatase activities that alter its assembly. In this study the effect of ischemia and reperfusion on the expression and phosphorylation of τ was examined in a reversible model of spinal cord ischemia in rabbits. τ was found to be dephosphorylated in response to ischemia with a time course that closely matched the production of permanent paraplegia. Dephosphorylation of τ was limited to the caudal lumbar spinal cord. In a similar manner, Ca2+/calmodulin-dependent kinase II activity was reduced only in the ischemic region. Thus, dephosphorylation of τ is an early marker of ischemia as is the rapid loss of Ca2+/calmodulin-dependent kinase II activity, τ, however, was rephosphorylated rapidly during reperfusion at site(s) that cause a reduction in its electrophoretic mobility regardless of the neurological outcome. Alterations in phosphorylation or degradation of τ may affect microtubule stability, possibly contributing to disruption of axonal transport but also facilitating neurite plasticity in a regenerative response.  相似文献   

9.
Abstract: Hyperphosphorylated τ, the major component of the paired helical filaments of Alzheimer's disease, was found to accumulate in the brains of mice in which the calcineurin Aα gene was disrupted [calcineurin Aα knockout (CNAα−/−)]. The hyperphosphorylation involved several sites on τ, especially the Ser396 and/or Ser404 recognized by the PHF-1 monoclonal antibody. The increase in phosphorylated τ content occurred primarily in the mossy fibers of the CNAα−/− hippocampus, which contained the highest level of calcineurin in brains of wild-type mice. The CNAα−/− mossy fibers also contained less neurofilament protein than normal, although the overall level of neurofilament phosphorylation was unchanged. In the electron microscope, the mossy fibers of CNAα−/− mice exhibited abnormalities in their cytoskeleton and a lower neurofilament/microtubule ratio than those of wild-type animals. These findings indicate that hyperphosphorylated τ can accumulate in vivo as a result of reduced calcineurin activity and is accompanied by cytoskeletal changes that are likely to have functional consequences on the affected neurons. The CNAα−/− mice were found in a separate study to have deficits in learning and memory that may result in part from the cytoskeletal changes in the hippocampus.  相似文献   

10.
Abstract: In this report, the phosphorylation sites of neurofilament protein of medium molecular mass (NF-M) by protein kinase FA/glycogen synthase kinase 3α (kinase FA/GSK-3α) were determined by two-dimensional electrophoresis/TLC, phosphoamino acid analysis, HPLC, Edman degradation, and peptide sequencing. Kinase FA/GSK-3α phosphorylates NF-M predominantly on serine, residue. Three major tryptic phosphopeptide peaks were resolved by C18 reverse-phase HPLC. Edman degradation and peptide sequence analysis revealed that AKS(p)PVSK is the phosphorylation site sequence for the first major peak. When mapping with the amino acid sequence of neurofilament, we finally demonstrate Ser603-Pro, one of the in vivo sites in NF-M, as the major site phosphorylated by kinase FA/GSK-3α. By using the same approach, we also identified the in vivo sites of Ser502-Pro, Ser506-Pro, and Ser666-Pro as the other three major sites in NF-M phosphorylated by kinase FA/GSK-3α. Taken together, the results provide initial evidence that kinase FA/GSK-3α may represent a physiologically relevant protein kinase involved in the in vivo phosphorylation of NF-M. Because Ser502, Ser506, Ser603, and Ser666 are all flanked by a carboxyl-terminal proline residue, the results provide further evidence that FA/GSK-3α may represent a proline-directed protein kinase involved in the structure-function regulation of the neuronal cytoskeletal system.  相似文献   

11.
Abstract: The two pathological lesions found in the brains of Alzheimer's disease patients, neurofibrillary tangles and neuritic plaques, are likely to be formed through a common pathway. Neurofibrillary tangles are intracellular aggregates of paired helical filaments, the main component of which is hyperphosphorylated forms of the microtubule-associated protein τ. Extracellular neuritic plaques and diffuse and vascular amyloid deposits are aggregates of β-amyloid protein, a 4-kDa protein derived from the amyloid precursor protein (APP). Using conditions in vitro under which two proline-directed protein kinases, glycogen synthase kinase-3β (GSK-3β) and mitogen-activated protein kinase (MAPK), were able to hyperphosphorylate τ, GSK-3β but not MAPK phosphorylated recombinant APPcyt. The sole site of phosphorylation in APPcyt by GSK-3β was determined by phosphoamino acid analysis and phosphorylation of APPcyt mutant peptides to be Thr743 (numbering as for APP770). This site was confirmed by endoproteinase Glu-C digestion of APPcyt and peptide sequencing. The ability of GSK-3β to phosphorylate APPcyt and τ provides a putative link between the two lesions and indicates a critical role of GSK-3β in the pathogenesis of Alzheimer's disease.  相似文献   

12.
Abstract: Recent evidence suggests that β-amyloid peptide (β-AP) may induce tau protein phosphorylation, resulting in loss of microtubule binding capacity and formation of paired helical filaments. The mechanism by which β-AP increases tau phosphorylation, however, is unclear. Using a hybrid septal cell line, SN56, we demonstrate that aggregated β-AP1–40 treatment caused cell injury. Accompanying the cell injury, the levels of phosphorylated tau as well as total tau were enhanced as detected immunochemically by AT8, PHF-1, Tau-1, and Tau-5 antibodies. Alkaline phosphatase treatment abolished AT8 and PHF-1 immunoreactivity, confirming that the tau phosphorylation sites were at least at Ser199/202 and Ser396. In association with the increase in tau phosphorylation, the immunoreactivity of cell-associated and secreted β-amyloid precursor protein (β-APP) was markedly elevated. Application of antisense oligonucleotide to β-APP reduced expression of β-APP and immunoreactivity of phosphorylated tau. Control peptide β-AP1–28 did not produce significant effects on tau phosphorylation, although it slightly increased cell-associated β-APP. These results suggest that βAP1–40-induced tau phosphorylation may be associated with increased β-APP expression in degenerated neurons.  相似文献   

13.
Abstract: Myelin membrane prepared from mouse sciatic nerve possesses both kinase and substrates to incorporate [32P]PO43− from [γ-32P]ATP into protein constituents. Among these, P0 glycoprotein is the major phosphorylated species. To identify the phosphorylated sites, P0 protein was in vitro phosphorylated, purified, and cleaved by CNBr. Two 32P-phosphopeptides were isolated by HPLC. The exact localization of the sequences around the phosphorylated sites was determined. The comparison with rat P0 sequence revealed, besides a Lys172 to Arg substitution, that in the first peptide, two serine residues (Ser176 and Ser181) were phosphorylated, Ser176 appearing to be modified subsequently to Ser181. In the second peptide, Ser197, Ser199, and Ser204 were phosphorylated. All these serines are clustered in the C-terminal region of P0 protein. This in vitro study served as the basis for the identification of the in vivo phosphorylation sites of the C terminal region of P0. We found that, in vivo, Ser181 and Ser176 are not phosphorylated, whereas Ser197, Ser199, Ser204, Ser208, and Ser214 are modified to various extents. Our results strongly suggest that the phosphorylation of these serine residues alters the secondary structure of this domain. Such a structural perturbation could play an important role in myelin compaction at the dense line level.  相似文献   

14.
Abstract: The protein kinases and protein phosphatases that act on tyrosine hydroxylase in vivo have not been established. Bovine adrenal chromaffin cells were permeabilized with digitonin and incubated with [γ-32P]ATP, in the presence or absence of 10 µ M Ca2+, 1 µ M cyclic AMP, 1 µ M phorbol dibutyrate, or various kinase or phosphatase inhibitors. Ca2+ increased the phosphorylation of Ser19 and Ser40. Cyclic AMP, and phorbol dibutyrate in the presence of Ca2+, increased the phosphorylation of only Ser40. Ser31 and Ser8 were not phosphorylated. The Ca2+-stimulated phosphorylation of Ser19 was incompletely reduced by inhibitors of calcium/calmodulin-stimulated protein kinase II (46% with KN93 and 68% with CaM-PKII 273–302), suggesting that another protein kinase(s) was contributing to the phosphorylation of this site. The Ca2+-stimulated phosphorylation of Ser40 was reduced by specific inhibitors of protein kinase A (56% with H89 and 38% with PKAi 5–22 amide) and protein kinase C (70% with Ro 31-8220 and 54% with PKCi 19–31), suggesting that protein kinases A and C contributed to most of the phosphorylation of this site. Results with okadaic acid and microcystin suggested that Ser19 and Ser40 were dephosphorylated by PP2A.  相似文献   

15.
Abstract: The rat μ-opioid receptor (rMOR1), expressed in human embryonic kidney 293 (HEK293) cells, shows a desensitization to the inhibitory effect of the μ agonist DAMGO on adenylate cyclase activity within 4 h of DAMGO preincubation. To investigate the role of calcium/calmodulin-dependent protein kinase II (CaM kinase II) on μ-opioid receptor desensitization, we coexpressed rMOR1 and constitutively active CaM kinase II in HEK293 cells. This coexpression led to a faster time course of agonist-induced desensitization of the μ-opioid receptor. The increase of desensitization could not be observed with a μ-opioid receptor mutant (S261A/S266A) that lacks two putative CaM kinase II phosphorylation sites in the third intracellular loop. In addition, injection of CaM kinase II in Xenopus oocytes led only to desensitization of expressed rMOR1, but not of an S261A/S266A receptor mutant. These results suggest that phosphorylation of Ser261 and Ser266 by CaM kinase II is involved in the desensitization of the μ-opioid receptor.  相似文献   

16.
Abstract: PEA-15 (phosphoprotein enriched in astrocytes, Mr = 15,000) is an acidic serine-phosphorylated protein highly expressed in the CNS, where it can play a protective role against cytokine-induced apoptosis. PEA-15 is a major substrate for protein kinase C. Endothelins, which are known to exert pleiotropic effects on astrocytes, were used to analyze further the processes involved in PEA-15 phosphorylation. Endothelin-1 or endothelin-3 (0.1 µ M ) induced a robust phosphorylation of PEA-15 that was abolished by the removal of extracellular calcium, but only diminished by inhibitors of protein kinase C. Microsequencing of phosphopeptides generated by digestion of PEA-15 following endothelin-1 treatment identified two phosphorylated residues: Ser104, previously recognized as the protein kinase C site, and a novel phosphoserine, Ser116, located in a consensus motif for either protein kinase casein kinase II or calcium/calmodulin-dependent protein kinase II (CaMKII). Partly purified PEA-15 was a substrate in vitro for CaMKII, but not for casein kinase II. Two-dimensional phosphopeptide mapping demonstrated that the site phosphorylated in vitro by CaMKII was also phosphorylated in intact astrocytes in response to endothelin. CaMKII phosphorylated selectively Ser116 and had no effect on Ser104, but in vitro phosphorylation by CaMKII appeared to facilitate further phosphorylation by protein kinase C. Treatment of intact astrocytes with okadaic acid enhanced the phosphorylation of the CaMKII site. These results demonstrate that PEA-15 is phosphorylated in astrocytes by CaMKII (or a related kinase) and by protein kinase C in response to endothelin.  相似文献   

17.
Abstract: The paired helical filament (PHF), which makes up the major fibrous component of the neurofibrillary lesions of Alzheimer's disease, is composed of hyperphosphorylated and abnormally phosphorylated microtubule-associated protein τ. Previous studies have identified serine and threonine residues phosphorylated in PHF-τ and have shown that τ can be phosphorylated at several of these sites by proline-directed protein kinases and cyclic AMP-dependent protein kinase. Here we have investigated which protein phosphatase activities can dephosphorylate recombinant τ phosphorylated with mitogen-activated protein kinase, glycogen synthase kinase-3β, neuronal cdc2-like kinase, or cyclic AMP-dependent protein kinase. We show that protein phosphatase 2A is by far the major protein phosphatase activity in brain that dephosphorylates τ phosphorylated in this manner.  相似文献   

18.
Abstract: τ is a major component of paired helical filaments found in the neurofibrillary tangles of Alzheimer's diseased brain. However, the mechanism or mechanisms responsible for the association of τ to form these aggregates remains unknown. In this study, the role of intermolecular disulfide bonds in the formation of higher order oligomers of bovine τ and the human recombinant τ isoform T3 was examined using the chemical cross-linking agent disuccinimidylsuberate (DSS). In addition, the role of phosphorylation and oxidation state on the in vitro self-association of τ was studied using this experimental model. Stabilization of τ-τ interactions with DSS indicated that intermolecular disulfide bonds probably play a predominant role in dimer formation, but the formation of higher order oligomers of τ cannot be attributed to these bonds alone. τ-τ interactions were significantly decreased either by blocking Cys residues or by exposing the τ to a reducing (nitrogen and dithiothreitol), instead of an oxidizing, environment. τ self-association was also significantly decreased by prior phosphorylation with calcium/calmodulin-dependent protein kinase II. Phosphorylation by cyclic AMP-dependent protein kinase or dephosphorylation by alkaline phosphatase did not alter τ self-assembly. These data suggest a role for several factors that may modulate τ self-association in vivo.  相似文献   

19.
Abstract: The microtubule-associated protein τ is abnormally hyperphosphorylated in Alzheimer's disease. Both proline-dependent protein kinases (PDPKs) and non-PDPKs are involved in this hyperphosphorylation of τ. Several PDPKs can phosphorylate τ in vitro and induce Alzheimer-like epitopes to many phosphorylation-dependent antibodies. A similar induction has not been reported with non-PDPKs. In this study we have evaluated six non-PDPKs [cyclic AMP-dependent (A-kinase), calcium/phospholipid-dependent (C-kinase), casein kinase-1 (CK-1), casein kinase-2 (CK-2), calcium/calmodulin-dependent protein kinase II, and calcium/calmodulin-dependent protein kinase from rat cerebellum] for their abilities to induce Alzheimer-like epitopes on τ. Such epitopes were induced by A-kinase, C-kinase, CK-1, and CK-2, but the degree of induction achieved by CK-1 was much greater than with the other kinases. These results suggest that CK-1 may play an important role in the conversion of τ from the normal to the abnormal phosphorylation state in Alzheimer's disease.  相似文献   

20.
Abstract: Axonal transport of microtubule-associated protein τ was studied in the motor fibers of the rat sciatic nerve 1–4 weeks after labeling of the spinal cord with [35S]methionine. As 60–70% of low molecular weight τ in this system was found to be insoluble in 1% Triton-containing buffer, labeled proteins in 6-mm consecutive nerve segments were first separated into Triton-soluble and insoluble fractions. Two-dimensional gel electrophoresis and immunoblotting with anti-tau antibody confirmed the presence of τ among labeled, transported proteins in both fractions. Isoform composition of labeled τ was similar to that of bulk axonal τ, the most acidic species with apparent molecular mass of 66 kDa being the major component. Transport profiles obtained by measuring radioactivities associated with this major isoform showed that soluble and insoluble τ were transported at different rates. Insoluble τ, which contained the majority of τ-associated radioactivity, was transported at 1.7 mm/day in slow component a (SCa), whereas soluble τ was transported faster, at 3 mm/day, corresponding to the rate of slow component b (SCb). Cotransport of insoluble τ with insoluble tubulin in SCa suggests its association with stable microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号