首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Purification of human respiratory syncytial virus fusion glycoprotein   总被引:1,自引:0,他引:1  
Human respiratory syncytial virus (RSV) fusion glycoprotein (F) elicits neutralizing antibodies to RSV and has therefore attracted much attention as a suitable candidate antigen in the development of gene-based vaccines against RSV infections. However, a major obstacle in vaccine development has been the problem of antigen purification. To address this problem, we have developed a new method that combines sucrose gradient ultracentrifugation and a two-step chromatographic process, to purify RSV F from RSV particles propagated in HEp-2 cells. Analysis of the fractions produced using this method showed recovery of a functional homodimer with a molecular weight of 140 kDa, and 54% preservation of the original F.  相似文献   

2.
It has been shown previously that the fusion glycoprotein of human respiratory syncytial virus (RSV-F) interacts with cellular heparan sulfate. Synthetic overlapping peptides derived from the F-protein sequence of RSV subtype A (strain A2) were tested for their ability to bind heparin using heparin-agarose affinity chromatography (HAAC). This evaluation identified 15 peptides representing eight linear heparin-binding domains (HBDs) located within F1 and F2 and spanning the protease cleavage activation site. All peptides bound to Vero and A549 cells, and binding was inhibited by soluble heparins and diminished by either enzymatic treatment to remove cell surface glycosaminoglycans or by treatment with sodium chlorate to decrease cellular sulfation. RSV-F HBD peptides were less likely to bind to glycosaminoglycan-deficient CHO-745 cells than parental CHO-K1 cells that express these molecules. Three RSV-F HBD peptides (F16, F26, and F55) inhibited virus infectivity; two of these peptides (F16 and F55) inhibited binding of virus to Vero cells, while the third (F26) did not. These studies provided evidence that two of the linear HBDs mapped by peptides F16 and F55 may mediate one of the first steps in the attachment of virus to cells while the third, F26, inhibited infectivity at a postattachment step, suggesting that interactions with cell surface glycosaminoglycans may play a role in infectivity of some RSV strains.  相似文献   

3.
The fusion protein of respiratory syncytial virus (RSV-F) is responsible for fusion of virion with host cells and infection of neighbouring cells through the formation of syncytia. A three-dimensional model structure of RSV-F was derived by homology modelling from the structure of the equivalent protein in Newcastle disease virus (NDV). Despite very low sequence homology between the two structures, most features of the model appear to have high credibility, although a few small regions in RSV-F whose secondary structure is predicted to be different to that in NDV are likely to be poorly modelled. The organization of individual residues identified in escape mutants against monoclonal antibodies correlates well with known antigenic sites. The location of residues involved in point mutations in several drug-resistant variants is also examined.  相似文献   

4.
Human respiratory syncytial virus (RSV) F glycoprotein (RSV-F) can independently interact with immobilized heparin and facilitate both attachment to and infection of cells via an interaction with cellular heparan sulfate. RSV-glycosaminoglycan (GAG) interactions were evaluated using heparin-agarose affinity chromatography. RSV-F from A2- and B1/cp-52 (cp-52)-infected cell lysates, RSV-F derived from a recombinant vaccinia virus, and affinity-purified F protein all bound to and were specifically eluted from heparin columns. In infectivity inhibition studies, soluble GAGs decreased the infectivity of RSV A2 and cp-52, with bovine lung heparin exhibiting the highest specific activity against both A2 (50% effective dose [ED(50)] = 0.28 +/- 0.11 microg/ml) and cp-52 (ED(50) = 0.55 +/- 0. 14 microg/ml). Furthermore, enzymatic digestion of cell surface GAGs by heparin lyase I and heparin lyase III but not chondroitinase ABC resulted in a significant reduction in cp-52 infectivity. Moreover, bovine lung heparin inhibited radiolabeled A2 and cp-52 virus binding up to 90%. Taken together, these data suggest that RSV-F independently interacts with heparin/heparan sulfate and this type of interaction facilitates virus attachment and infectivity.  相似文献   

5.
The Human Respiratory Syncytial Virus (HRSV) fusion protein (F) was expressed in Escherichia coli BL21A using the pET28a vector at 37 °C. The protein was purified from the soluble fraction using affinity resin. The structural quality of the recombinant fusion protein and the estimation of its secondary structure were obtained by circular dichroism. Structural models of the fusion protein presented 46% of the helices in agreement with the spectra by circular dichroism analysis. There are only few studies that succeeded in expressing the HRSV fusion protein in bacteria. This is a report on human fusion protein expression in E. coli and structure analysis, representing a step forward in the development of fusion protein F inhibitors and the production of antibodies.  相似文献   

6.
Respiratory syncytial virus (RSV) invades host cells via a type I fusion (F) glycoprotein that undergoes dramatic structural rearrangements during the fusion process. Neutralizing monoclonal antibodies, such as 101F, palivizumab, and motavizumab, target two major antigenic sites on the RSV F glycoprotein. The structures of these sites as peptide complexes with motavizumab and 101F have been previously determined, but a structure for the trimeric RSV F glycoprotein ectodomain has remained elusive. To address this issue, we undertook structural and biophysical studies on stable ectodomain constructs. Here, we present the 2.8-Å crystal structure of the trimeric RSV F ectodomain in its postfusion conformation. The structure revealed that the 101F and motavizumab epitopes are present in the postfusion state and that their conformations are similar to those observed in the antibody-bound peptide structures. Both antibodies bound the postfusion F glycoprotein with high affinity in surface plasmon resonance experiments. Modeling of the antibodies bound to the F glycoprotein predicts that the 101F epitope is larger than the linear peptide and restricted to a single protomer in the trimer, whereas motavizumab likely contacts residues on two protomers, indicating a quaternary epitope. Mechanistically, these results suggest that 101F and motavizumab can bind to multiple conformations of the fusion glycoprotein and can neutralize late in the entry process. The structural preservation of neutralizing epitopes in the postfusion state suggests that this conformation can elicit neutralizing antibodies and serve as a useful vaccine antigen.  相似文献   

7.
Fatty acid acylation of vaccinia virus proteins.   总被引:1,自引:6,他引:1       下载免费PDF全文
Labeling of vaccinia virus-infected cells with [3H]myristic acid resulted in the incorporation of label into two viral proteins with apparent molecular weights of 35,000 and 25,000 (designated M35 and M25, respectively). M35 and M25 were expressed in infected cells after the onset of viral DNA replication, and both proteins were present in purified intracellular virus particles. Virion localization experiments determined M25 to be a constituent of the virion envelope, while M35 appeared to be peripherally associated with the virion core. M35 and M25 labeled by [3H]myristic acid were stable to treatment with neutral hydroxylamine, suggesting an amide-linked acylation of the proteins. Chromatographic identification of the protein-bound fatty acid moieties liberated after acid methanolysis of M25, isolated from infected cells labeled during a 4-h pulse, resulted in the recovery of 25% of the protein-bound fatty acid as myristate-associated label and 75% as palmitate, indicating that interconversion of myristate to palmitate had occurred during the labeling period. Similar analyses of M25 and M35, isolated from infected cells labeled during a 0.5-h pulse, determined that 46 and 43%, respectively, of the protein-bound label had been elongated to palmitate even during this brief labeling period. In contrast, M25 and M35 isolated from purified intracellular virions labeled continuously during 24 h of growth contained 75 and 70%, respectively, myristate-associated label, suggesting greater stability of these proteins or a favored interaction of the proteins containing myristate with the maturing or intracellular virion.  相似文献   

8.
The human respiratory syncytial virus (Long strain) fusion protein contains six potential N-glycosylation sites: N27, N70, N116, N120, N126, and N500. Site-directed mutagenesis of these positions revealed that the mature fusion protein contains three N-linked oligosaccharides, attached to N27, N70, and N500. By introducing these mutations into the F gene in different combinations, four more mutants were generated. All mutants, including a triple mutant devoid of any N-linked oligosaccharide, were efficiently transported to the plasma membrane, as determined by flow cytometry and cell surface biotinylation. None of the glycosylation mutations interfered with proteolytic activation of the fusion protein. Despite similar levels of cell surface expression, the glycosylation mutants affected fusion activity in different ways. While the N27Q mutation did not have an effect on syncytium formation, loss of the N70-glycan caused a fusion activity increase of 40%. Elimination of both N-glycans (N27/70Q mutant) reduced the fusion activity by about 50%. A more pronounced reduction of the fusion activity of about 90% was observed with the mutants N500Q, N27/500Q, and N70/500Q. Almost no fusion activity was detected with the triple mutant N27/70/500Q. These data indicate that N-glycosylation of the F2 subunit at N27 and N70 is of minor importance for the fusion activity of the F protein. The single N-glycan of the F1 subunit attached to N500, however, is required for efficient syncytium formation.  相似文献   

9.
The cysteine residue in the cytoplasmic domain at position 489 of the sequence of the glycoprotein (G protein) isolated from vesicular-stomatitis virions is completely blocked for carboxymethylation. After release of covalently bound fatty acids by hydroxylamine at pH 6.8, this cysteine residue could be specifically labelled by iodo[14C]acetic acid. Reaction products were analysed after specific cleavage of labelled G protein at asparagine-glycine bonds by hydroxylamine at pH 9.3, which generated a C-terminal peptide of Mr 15,300 containing only the single cysteine residue. Bromelain digestion of [3H]palmitic acid-labelled membrane fractions of vesicular-stomatitis-virus-infected baby-hamster kidney cells removed almost completely the 3H radioactivity from the cytoplasmic domain of the G protein, whereas the ectodomain was completely protected by the microsomal membrane. This result indicates that the acylation site of the G protein is exposed on the cytoplasmic side of intracellular membranes. Taken together, both biochemical techniques strongly suggest that the single cysteine-489 residue, which is located six amino acid residues distal to the putative transmembrane domain, is the acylation site. The thioester bond between palmitic acid and the G protein is quite resistant to hydroxylamine treatment (0.32 M at pH 6.8 for 1 h at 37 degrees C) compared with the reactivity of the thioester linkage in palmitoyl-CoA, which is cleaved at relatively low concentrations of hydroxylamine (0.05 M).  相似文献   

10.
Amino acid sequence of the human respiratory syncytial (RS) virus nucleocapsid (NC) protein, deduced from the DNA sequence of a recombinant plasmid, is presented. The cDNA plasmid (pRSB11) has 1412 bp of RS viral NC sequence and lacks six nucleotides of the 5' end of mRNA. There is a single long open reading frame encoding 467 amino acids. This 51540 dal protein is rich in basic amino acids and has no homologies with other known viral capsid proteins.  相似文献   

11.
Heptad repeat regions (HR1 and HR2) are highly conserved peptides located in F(1) of paramyxovirus envelope proteins. They are important in the process of virus fusion and form six-helix bundle structure (trimer of HR1 and HR2 heterodimer) post-fusion, similar to those found in the fusion proteins of other enveloped viruses, such as retrovirus HIV. Both HR1 and HR2 show potent inhibition for virus fusion in some members of paramyxovirus. However, in other members, only HR2 gives strong inhibition whereas HR1 does not. Human respiratory syncytial virus (hRSV) is a member of paramyxovirus and its crystal structure of HR1 and HR2 six-helix bundle was solved lately. Although hRSV HR2 inhibition was reported, nevertheless the effect of HR1 on virus fusion is not known. In this study, hRSV HR1 and HR2 were expressed as fusion protein separately in Escherichia coli system and their complex assembly and virus fusion inhibition effect have been analysed. It shows that both HR1 and HR2 (in the fusion form with 50-amino-acid fusion partner) of hRSV F protein give strong inhibition on virus fusion (IC(50) values are 1.68 and 2.93 microM, respectively) and they form stable six-helix bundle in vitro with both in the fusion protein form.  相似文献   

12.
Human respiratory syncytial virus (HRSV) is the most frequent cause of severe respiratory infections in infancy. No vaccine against this virus has yet been protective, and antiviral drugs have been of limited utility. Using the cotton rat model of HRSV infection, we examined bovine respiratory syncytial virus (BRSV), a cause of acute respiratory disease in young cattle, as a possible vaccine candidate to protect children against HRSV infection. Cotton rats were primed intranasally with graded doses of BRSV/375 or HRSV/Long or were left unprimed. Three weeks later, they were challenged intranasally with either BRSV/375, HRSV/Long (subgroup A), or HRSV/18537 (subgroup B). At intervals postchallenge, animals were sacrificed for virus titration and histologic evaluation. Serum neutralizing antibody titers were determined at the time of viral challenge. BRSV/375 replicated to low titers in nasal tissues and lungs. Priming with 10(5) PFU of BRSV/375 effected a 500- to 1,000-fold reduction in peak nasal HRSV titer and a greater than 1,000-fold reduction in peak pulmonary HRSV titer upon challenge with HRSV/Long or HRSV/18537. In contrast to priming with HRSV, priming with BRSV did not induce substantial levels of neutralizing antibody against HRSV and was associated with a delayed onset of clearance of HRSV upon challenge. Priming with BRSV/375 caused mild nasal and pulmonary pathology and did not cause exacerbation of disease upon challenge with HRSV/Long. Our findings suggest that BRSV may be a potential vaccine against HRSV and a useful tool for studying the mechanisms of immunity to HRSV.  相似文献   

13.
Eighteen neutralizing monoclonal antibodies (MAbs) specific for the fusion glycoprotein of the A2 strain of respiratory syncytial virus (RSV) were used to construct a detailed topological and operational map of epitopes involved in neutralization and fusion. Competitive binding assays identified three nonoverlapping antigenic sites (A, B, and C) and one bridge site (AB). Thirteen MAb-resistant mutants (MARMs) were selected, and the neutralization patterns of the MAbs with either MARMs or RSV clinical strains identified a minimum of 16 epitopes. MARMs selected with antibodies to six of the site A and AB epitopes displayed a small-plaque phenotype, which is consistent with an alteration in a biologically active region of the F molecule. Analysis of MARMs also indicated that these neutralization epitopes occupy topographically distinct but conformationally interdependent regions with unique biological and immunological properties. Antigenic variation in F epitopes was examined by using 23 clinical isolates (18 subgroup A and 5 subgroup B) in cross-neutralization assays with the 18 anti-F MAbs. This analysis identified constant, variable, and hypervariable regions on the molecule and indicated that antigenic variation in the neutralization epitopes of the RSV F glycoprotein is the result of a noncumulative genetic heterogeneity. Of the 16 eptiopes, 8 were conserved on all or all but 1 of 23 subgroup A or subgroup B clinical isolates.  相似文献   

14.
The conformational properties of a 21-residue peptide, corresponding to amino acids 255 to 275 (F255-275) of the human respiratory syncytial virus fusion (F) glycoprotein, have been studied by CD and nmr spectroscopy. This peptide includes residues 262, 268, and 272 of the F polypeptide that are essential for integrity of most epitopes that mapped into a major antigenic site of the F molecule. CD data indicate that F255-275 adopts a random coil conformation in aqueous solution at low peptide concentrations. However, as the concentration of peptide is increased, a higher percentage of peptide molecules adopts an organized structure. This effect can be more easily observed when trifluoroethanol (30%) is added to peptide solutions, giving rise to CD spectra that resemble those of α-helix structures. These conformational changes were confirmed by nmr spectroscopy. The nuclear Overhauser effects observed in 30% trifluoroethanol/water together with the conformational Hα chemical shift data allowed us to propose a structural model of helix-loop-helix for the peptide in solution. In addition, these helical regions contain the amino acid residues essential for epitope integrity in the native F molecule. These results give new insights into the antigenic structure of the respiratory syncytial virus F glycoprotein. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
《Seminars in Virology》1995,6(6):371-378
Human respiratory syncytial virus (HuRSV) is the majorviral cause of severe lower respiratory tract disease in babies and infants with epidemics occurring annually in the winter in temperate climates. Analysis of the antigenic and genetic variability of HuRSV isolates has shown that there are two groups of the virus and that each group can be further subdivided into a number of genotypes in which the attachment protein shows the greatest variability together with progressive change. Epidemics are made up of multiple genotypes whose proportions vary from year to year. The various genotypes cocirculate with very similar viruses distributed world-wide.  相似文献   

16.
Trypsin digestion of the purified F protein from human respiratory syncytial virus (Long strain) generated a set of fragments in the amino-terminal third of the F1 subunit which contained the epitope 47F involved in neutralization. Sequencing of five escape mutant viruses selected with monoclonal antibody 47F allowed us to map precisely two amino acid residues (262 and 268) of the F1 subunit which are essential for the integrity of this important epitope. The results are discussed in terms of the mechanisms involved in virus neutralization and the design of potential synthetic vaccines.  相似文献   

17.
cDNAs encoding the G glycoprotein of respiratory syncytial virus and the hemagglutinin-neuraminidase (HN) glycoprotein of parainfluenza virus type 3 were modified by site-specific mutagenesis and restriction fragment replacement to encode chimeric proteins consisting of the cytoplasmic and transmembrane domains of one protein fused to the ectodomain of the other. In the case of the HN ectodomain attached to the G transmembrane and cytoplasmic domains, cell surface expression of the chimera was reduced. Otherwise, the presence of the heterologous transmembrane and cytoplasmic domains had little effect on the processing of the HN or G ectodomain, as assayed by the acquisition of N-linked and O-linked carbohydrates, transport to the cell surface and, in the case of HN, folding, oligomerization, and hemadsorption activity. These results showed that the synthesis and processing of each ectodomain did not require the homologous transmembrane and cytoplasmic domains. In particular, O glycosylation of the G protein was specified fully by its ectodomain, even though this domain is highly divergent among the respiratory syncytial virus antigenic subgroups. In addition, whereas the cytoplasmic and transmembrane domains of the G protein were relatively highly conserved, they were nonetheless fully replaceable without significantly affecting processing.  相似文献   

18.
Respiratory syncytial virus (RSV) is a major cause of pneumonia and bronchiolitis in infants and elderly people. Currently there is no effective vaccine against RSV, but passive prophylaxis with neutralizing antibodies reduces hospitalizations. To investigate the mechanism of antibody-mediated RSV neutralization, we undertook structure-function studies of monoclonal antibody 101F, which binds a linear epitope in the RSV fusion glycoprotein. Crystal structures of the 101F antigen-binding fragment in complex with peptides from the fusion glycoprotein defined both the extent of the linear epitope and the interactions of residues that are mutated in antibody escape variants. The structure allowed for modeling of 101F in complex with trimers of the fusion glycoprotein, and the resulting models suggested that 101F may contact additional surfaces located outside the linear epitope. This hypothesis was supported by surface plasmon resonance experiments that demonstrated 101F bound the peptide epitope ~16,000-fold more weakly than the fusion glycoprotein. The modeling also showed no substantial clashes between 101F and the fusion glycoprotein in either the pre- or postfusion state, and cell-based assays indicated that 101F neutralization was not associated with blocking virus attachment. Collectively, these results provide a structural basis for RSV neutralization by antibodies that target a major antigenic site on the fusion glycoprotein.  相似文献   

19.
Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号