首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested in the ecological literature that species may be excluded (or "deleted") from an environment because they do not differ sufficiently from other species in the environment. We develop tests of various deletion hypotheses based on the assumption of a random distribution of species sizes. The results provide information on the behavior of quantities of interest to ecologists studying this phenomenon, namely contiguous ratios, and allow us to gauge the extent of deletion required before we can be confident of detecting it. The results indicate that this random-effects approach leads to tests which have low power for ecological applications but may be more useful in fields which permit larger sample sizes.  相似文献   

2.
Much empirical evidence suggests that there is an optimal body size for mammals and that this optimum is in the vicinity of l00g. This presumably reflects an underlying fitness function that is greatest at this mass. Here, I combine such a fitness function with an equilibrium model of competitive character displacement to assess the potential influence of a globally optimal body size in structuring local ecological communities. The model accurately predicts the range of body sizes and the average difference in size for species in communities of varying species richness. The model also predicts a uniform spacing of body sizes, rather than the gaps and clumps in the sizes of coexisting species observed in real communities. Alternative explanations for this phenomenon are discussed. The allometric relationships that result in a body size optimum subsume a large number of characteristics associated with the physiological, behavioral, demographic, and evolutionary dynamics of the species. Further integration of the underlying dynamics (e.g. individual energetics) of these relationships into all hierarchical levels of ecology will have to incorporate multiple interactive sites, spatial heterogeneity, and phylogenetic structure, but it has the potential to provide important discoveries into the means by which natural selection operates.  相似文献   

3.
A reasonably general theory for predicting the outcome of coevolution among interacting species is developed. It is applied to a model for resource partitioning among competing species.Current theory for resource partitioning is based on derivations of a “limiting similarity”—i.e., a limit to how similar competitors can be to one another consistent with coexistence. This theory presumes there is a mechanism, perhaps invasion and extinction, which causes competitors to attain the limiting similarity. The view taken in this paper is that partitioning is an evolutionary compromise between pressures for character displacement and disadvantages inherent in the shift to different resource types.A set of principles is offered for the evolution of the parameters in ecological models. (1) For single population models natural selection causes the parameters ultimately to assume those values which produce the highest equilibrium population size. (2) For models of interacting populations, but without interspecific frequency-dependence, natural selection causes the parameters to assume values which produce either the highest or lowest equilibrium population size for any species depending on the sign of the “feedback” in the community obtained by deleting that species. (3) For models of interacting populations with interspecific frequency dependence natural selection leads to parameter values which produce intermediate equilibrium population sizes. A function called the conditional equilibrium population size is introduced. Provided (a) the mean fitness is a maximum in each species at a stable coevolutionary equilibrium and (b) there is negative density-dependence in each species then natural selection causes the parameters to assume values which produce the highest conditional equilibrium population size for each species.These coevolutionary principles, applied to a model for resource partitioning, entail that the niche separation between species relative to given niche widths, increases with the variety of available resources and decreases with the number of competing populations. Also, the evolution of character displacement between two species does not proceed far enough to maximize the equilibrium population sizes of the species involved. These results imply that the relationship between the niche overlap (of nearest neighbors) and species diversity is qualitatively different depending on whether the variety of resources at any place covaries with the species diversity there. Without covariation niche overlap increases with species diversity; with covariation overlap may decrease with species diversity. This study provides the beginning of a theory for the convergent evolution of community structure.  相似文献   

4.
The species abundance distribution (SAD) has been a central focus of community ecology for over fifty years, and is currently the subject of widespread renewed interest. The gambin model has recently been proposed as a model that provides a superior fit to commonly preferred SAD models. It has also been argued that the model's single parameter (α) presents a potentially informative ecological diversity metric, because it summarises the shape of the SAD in a single number. Despite this potential, few empirical tests of the model have been undertaken, perhaps because the necessary methods and software for fitting the model have not existed. Here, we derive a maximum likelihood method to fit the model, and use it to undertake a comprehensive comparative analysis of the fit of the gambin model. The functions and computational code to fit the model are incorporated in a newly developed free‐to‐download R package (gambin). We test the gambin model using a variety of datasets and compare the fit of the gambin model to fits obtained using the Poisson lognormal, logseries and zero‐sum multinomial distributions. We found that gambin almost universally provided a better fit to the data and that the fit was consistent for a variety of sample grain sizes. We demonstrate how α can be used to differentiate intelligibly between community structures of Azorean arthropods sampled in different land use types. We conclude that gambin presents a flexible model capable of fitting a wide variety of observed SAD data, while providing a useful index of SAD form in its single fitted parameter. As such, gambin has wide potential applicability in the study of SADs, and ecology more generally.  相似文献   

5.
Generalized linear mixed models (GLMMs) have become a frequently used tool for the analysis of non-Gaussian longitudinal data. Estimation is based on maximum likelihood theory, which assumes that the underlying probability model is correctly specified. Recent research is showing that the results obtained from these models are not always robust against departures from the assumptions on which these models are based. In the present work we have used simulations with a logistic random-intercept model to study the impact of misspecifying the random-effects distribution on the type I and II errors of the tests for the mean structure in GLMMs. We found that the misspecification can either increase or decrease the power of the tests, depending on the shape of the underlying random-effects distribution, and it can considerably inflate the type I error rate. Additionally, we have found a theoretical result which states that whenever a subset of fixed-effects parameters, not included in the random-effects structure equals zero, the corresponding maximum likelihood estimator will consistently estimate zero. This implies that under certain conditions a significant effect could be considered as a reliable result, even if the random-effects distribution is misspecified.  相似文献   

6.
This paper proposes a statistical generalized species-area model (GSAM) to represent various patterns of species-area relationship (SAR), which is one of the fundamental patterns in ecology. The approach enables the generalization of many preliminary models, as power-curve model, which is commonly used to mathematically describe the SAR. The GSAM is applied to simulated data set of species diversity in areas of different sizes and a real-world data of insects of Hymenoptera order has been modeled. We show that the GSAM enables the identification of the best statistical model and estimates the number of species according to the area.  相似文献   

7.
Phylogenetic analysis has led to significant insights into the evolution of early life-history stages of marine invertebrates. Although echinoderms have been a major focus, developmental and phylogenetic information are relatively poor for ophiuroids, the most species-rich echinoderm class. We used DNA sequences from two mitochondrial genes to develop a phylogenetic hypothesis for 14 brittlestar species in the genus Macrophiothrix (Family Ophiotrichidae). Species are similar in adult form and ecology, but have diverse egg sizes and modes of larval development. In particular, two species have rare larval forms with characteristics that are intermediate between more common modes of feeding and non-feeding development. We use the phylogeny to address whether intermediate larval forms are rare because the evolution of a simplified morphology is rapid once food is no longer required for development. In support of this hypothesis, branch lengths for intermediate forms were short relative to those for species with highly derived non-feeding forms. The absolute rarity of such forms makes robust tests of the hypothesis difficult.  相似文献   

8.
Meta-analysis is increasingly used in ecology and evolutionary biology. Yet, in these fields this technique has an important limitation: phylogenetic non-independence exists among taxa, violating the statistical assumptions underlying traditional meta-analytic models. Recently, meta-analytical techniques incorporating phylogenetic information have been developed to address this issue. However, no syntheses have evaluated how often including phylogenetic information changes meta-analytic results. To address this gap, we built phylogenies for and re-analysed 30 published meta-analyses, comparing results for traditional vs. phylogenetic approaches and assessing which characteristics of phylogenies best explained changes in meta-analytic results and relative model fit. Accounting for phylogeny significantly changed estimates of the overall pooled effect size in 47% of datasets for fixed-effects analyses and 7% of datasets for random-effects analyses. Accounting for phylogeny also changed whether those effect sizes were significantly different from zero in 23 and 40% of our datasets (for fixed- and random-effects models, respectively). Across datasets, decreases in pooled effect size magnitudes after incorporating phylogenetic information were associated with larger phylogenies and those with stronger phylogenetic signal. We conclude that incorporating phylogenetic information in ecological meta-analyses is important, and we provide practical recommendations for doing so.  相似文献   

9.
Harpole WS  Suding KN 《Ecology letters》2007,10(12):1164-1169
It is the combination of large fitness differences and strong stabilizing mechanisms that often constitute niche-based explanations for species abundance patterns. Despite the importance of this assumption to much of community ecology, empirical evidence is surprisingly limited. Empirical tests are critical because many abundance patterns are also consistent with neutral-based alternatives (that assume no fitness differences or stabilization). We quantified interactions of four annual grassland species in two-species mixtures at varying frequencies. We found evidence of strong negative frequency-dependent stabilization, where scaled population growth rates increased with decreasing frequency for all four species. There was also a consistent competitive hierarchy among these species indicative of strong fitness differences that, in most cases, suggested potential competitive exclusion despite the observed strong stabilization.  相似文献   

10.
Yuan Y  Little RJ 《Biometrics》2009,65(2):487-496
Summary .  Consider a meta-analysis of studies with varying proportions of patient-level missing data, and assume that each primary study has made certain missing data adjustments so that the reported estimates of treatment effect size and variance are valid. These estimates of treatment effects can be combined across studies by standard meta-analytic methods, employing a random-effects model to account for heterogeneity across studies. However, we note that a meta-analysis based on the standard random-effects model will lead to biased estimates when the attrition rates of primary studies depend on the size of the underlying study-level treatment effect. Perhaps ignorable within each study, these types of missing data are in fact not ignorable in a meta-analysis. We propose three methods to correct the bias resulting from such missing data in a meta-analysis: reweighting the DerSimonian–Laird estimate by the completion rate; incorporating the completion rate into a Bayesian random-effects model; and inference based on a Bayesian shared-parameter model that includes the completion rate. We illustrate these methods through a meta-analysis of 16 published randomized trials that examined combined pharmacotherapy and psychological treatment for depression.  相似文献   

11.
Global biodiversity hotspots are rich in endemic insect species, many of which are threatened by the ongoing anthropogenic pressures on their habitats. The Cape region (South Africa) is one of these biodiversity hotspots, maintaining a high number of endemics. However, the ecology of most insect species in this region remains poorly understood. The two Orthoptera species Betiscoides meridionalis and Betiscoides parva are endemic to the Cape region and specialized on restio vegetation. They are threatened by increasing wildfire frequencies and invasions of non-native plant species. However, this information has been inferred from habitat changes, whereas no ecological study on these species has been conducted since they have been described. In order to facilitate conservation management, information on the ecology of these species is urgently required. The aim of our study was (1) to obtain data on the population ecology (particularly population sizes and mobility), and (2) to study the behavior of both species in response to environmental factors. For this purpose a mark-recapture-study and an observational behavior study were conducted. Both species had small population sizes and a low mobility with males moving greater distances than females. Wind had a strong influence on the behavior of Betiscoides, particularly on the small males of B. parva. Future studies might thus focus on the question whether wind-exposure is a critical factor for habitat choice of this species. We strongly recommend enhancing the connectivity of restio habitats and restoring these habitats to prevent extinction of specialized insect species.  相似文献   

12.
Coevolution of an avian host and its parasitic cuckoo   总被引:1,自引:0,他引:1  
Abstract We use a quantitative genetic model to examine the coevolution of host and cuckoo egg characters (termed "size" as a proxy for general appearance), host discrimination, and host and cuckoo population dynamics. A host decides whether to discard an egg using a comparison of the sizes of the eggs in her nest, which changes as host and cuckoo eggs evolve. Specifically, we assume that the probability that she discards the largest egg in her nest depends on how much larger it is than the second largest egg. This decision rule (i.e., the acceptable difference in egg sizes) also evolves, changing both the chance of successful rejection of a cuckoo egg in parasitized nests and the chance of mistaken rejection of a host egg in both parasitized and unparasitized nests. We find a stable equilibrium for coexistence of the host and cuckoo where there is cuckoo egg mimicry, evolutionary displacement of the host egg away from the cuckoo egg phenotype, and host discrimination against unusual eggs. Both host discrimination and host egg displacement are fairly weak at the equilibrium. Cuckoo egg mimicry, although imperfect, usually evolves more extensively and quickly than the responses of the host. Our model provides evidence for both the evolutionary equilibrium and evolutionary lag hypotheses of host acceptance of parasitic eggs.  相似文献   

13.
Knowledge of animal diets provides essential insights into their life history and ecology, although diet estimation is challenging and remains an active area of research. Quantitative fatty acid signature analysis (QFASA) has become a popular method of estimating diet composition, especially for marine species. A primary assumption of QFASA is that constants called calibration coefficients, which account for the differential metabolism of individual fatty acids, are known. In practice, however, calibration coefficients are not known, but rather have been estimated in feeding trials with captive animals of a limited number of model species. The impossibility of verifying the accuracy of feeding trial derived calibration coefficients to estimate the diets of wild animals is a foundational problem with QFASA that has generated considerable criticism. We present a new model that allows simultaneous estimation of diet composition and calibration coefficients based only on fatty acid signature samples from wild predators and potential prey. Our model performed almost flawlessly in four tests with constructed examples, estimating both diet proportions and calibration coefficients with essentially no error. We also applied the model to data from Chukchi Sea polar bears, obtaining diet estimates that were more diverse than estimates conditioned on feeding trial calibration coefficients. Our model avoids bias in diet estimates caused by conditioning on inaccurate calibration coefficients, invalidates the primary criticism of QFASA, eliminates the need to conduct feeding trials solely for diet estimation, and consequently expands the utility of fatty acid data to investigate aspects of ecology linked to animal diets.  相似文献   

14.
15.
16.
Ecological, morphological and life‐history traits have been increasingly used in community ecology during the last decade. Dung beetles represent a model group of insects frequently used in studies of landscape ecology and grassland management. Their body sizes and nesting behavioral traits are regularly used to help understand ecological processes at the community level. However, information on their seasonal activity, wing morphometry and dung specialization is sparse in published reports, or is simply not available yet. We thus compiled a comprehensive list of the morphological and ecological traits of Central European dung beetles (Geotrupidae, Scarabaeidae and Aphodiidae). We gathered information from published works and, for the first time, took morphometric measurements of wings. We provide a database of 12 traits for all 100 dung beetle species occurring in Central Europe. Most species are not restricted to one specific dung type, and the most frequently used dung types are sheep/goat, cattle and horse dung, which are almost equally exploited by 90, 89 and 87 species, respectively. More than one‐third of all species are active in winter, and the number of active species is the highest in June. The wing morphometry shows a high variation and is largely determined by the family identity; the ratio of elytron length to wing area is the largest in Aphodiidae but the smallest in Geotrupidae. Our database is the first standardized set of information for Central European dung beetles and can be used in future trait‐based studies focusing on the ecology and conservation of these beetles.  相似文献   

17.
Species distribution models show great promise as tools for conservation ecology. However, their accuracy has been shown to vary widely among taxa. There is some evidence that this variation is partly owing to ecological differences among species, which make them more or less easy to model. Here we test the effect of five characteristics of Egyptian butterfly species on the accuracy of distribution models, the first such comparison for butterflies in an arid environment. Unlike most previous studies, we perform independent contrasts to control for species relatedness. We show that range size, both globally and locally, has a negative effect on model accuracy. The results shed light on causes of variation in distribution model accuracy among species, and hence have relevance to practitioners using species distribution models in conservation decision making.  相似文献   

18.
The incomplete natural history of mitochondria   总被引:35,自引:0,他引:35  
Mitochondrial DNA (mtDNA) has been used to study molecular ecology and phylogeography for 25 years. Much important information has been gained in this way, but it is time to reflect on the biology of the mitochondrion itself and consider opportunities for evolutionary studies of the organelle itself and its ecology, biochemistry and physiology. This review has four sections. First, we review aspects of the natural history of mitochondria and their DNA to show that it is a unique molecule with specific characteristics that differ from nuclear DNA. We do not attempt to cover the plethora of differences between mitochondrial and nuclear DNA; rather we spotlight differences that can cause significant bias when inferring demographic properties of populations and/or the evolutionary history of species. We focus on recombination, effective population size and mutation rate. Second, we explore some of the difficulties in interpreting phylogeographical data from mtDNA data alone and suggest a broader use of multiple nuclear markers. We argue that mtDNA is not a sufficient marker for phylogeographical studies if the focus of the investigation is the species and not the organelle. We focus on the potential bias caused by introgression. Third, we show that it is not safe to assume a priori that mtDNA evolves as a strictly neutral marker because both direct and indirect selection influence mitochondria. We outline some of the statistical tests of neutrality that can, and should, be applied to mtDNA sequence data prior to making any global statements concerning the history of the organism. We conclude with a critical examination of the neglected biology of mitochondria and point out several surprising gaps in the state of our knowledge about this important organelle. Here we limelight mitochondrial ecology, sexually antagonistic selection, life-history evolution including ageing and disease, and the evolution of mitochondrial inheritance.  相似文献   

19.
One of the central goals of ecology is to predict the distribution and abundance of organisms. Here, we show that, in ecosystems of high biodiversity, the outcome of multispecies competition can be fundamentally unpredictable. We consider a competition model widely applied in phytoplankton ecology and plant ecology in which multiple species compete for three resources. We show that this competition model may have several alternative outcomes, that the dynamics leading to these alternative outcomes may exhibit transient chaos, and that the basins of attraction of these alternative outcomes may have an intermingled fractal geometry. As a consequence of this fractal geometry, it is impossible to predict the winners of multispecies competition in advance.  相似文献   

20.
Detailed studies of reproductive isolation and how it varies among populations can provide valuable insight into the mechanisms of speciation. Here we investigate how the strength of premating isolation varies between sympatric and allopatric populations of threespine sticklebacks to test a prediction of the hypothesis of reinforcement: that interspecific mate discrimination should be stronger in sympatry than in allopatry. In conducting such tests, it is important to control for ecological character displacement between sympatric species because ecological character divergence may strengthen prezygotic isolation as a by-product. We control for ecological character displacement by comparing mate preferences of females from a sympatric population (benthics) with mate preferences of females from two allopatric populations that most closely resemble the sympatric benthic females in ecology and morphology. No-choice mating trials indicate that sympatric benthic females mate less readily with heterospecific (limnetic) than conspecific (benthic) males, whereas two different populations of allopatric females resembling benthics show no such discrimination. These differences demonstrate reproductive character displacement of benthic female mate choice. Previous studies have established that hybridization between sympatric species occurred in the past in the wild and that hybrid offspring have lower fitness than either parental species, thus providing conditions under which natural selection would favor individuals that do not hybridize. Results are therefore consistent with the hypothesis that female mate preferences have evolved as a response to reduced hybrid fitness (reinforcement), although direct effects of sympatry or a biased extinction process could also produce the pattern. Males of the other sympatric species (limnetics) showed a preference for smaller females, in contrast to the inferred ancestral preference for larger females, suggesting reproductive character displacement of limnetic male mate preferences as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号