首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
冬小麦叶片气孔导度模型水分响应函数的参数化   总被引:2,自引:0,他引:2       下载免费PDF全文
植物气孔导度模型的水分响应函数用来模拟水分胁迫对气孔导度的影响过程, 是模拟缺水环境下植物与大气间水、碳交换过程的关键算法。水分响应函数包括空气湿度响应函数和土壤湿度(或植物水势)响应函数, 该研究基于田间实验观测, 分析了冬小麦(Triticum aestivum)叶片气孔导度对不同空气饱和差和不同土壤体积含水量或叶水势的响应规律。一个土壤水分梯度的田间处理在中国科学院禹城综合试验站实施, 不同水分胁迫下的冬小麦叶片气体交换过程和气孔导度以及其他的温湿度数据被观测, 同时观测了土壤含水量和叶水势。实验数据表明, 冬小麦叶片气孔导度对空气饱和差的响应呈现双曲线规律, 变化趋势显示大约1 kPa空气饱和差是一个有用的阈值, 在小于1 kPa时, 冬小麦气孔导度对空气饱和差变化反应敏感, 而大于1 kPa后则反应缓慢; 分析土壤体积含水量与中午叶片气孔导度的关系发现, 中午叶片气孔导度随土壤含水量增加大致呈现线性增加趋势, 但在平均土壤体积含水量大于大约25%以后, 气孔导度不再明显增加, 而是维持在较高导度值上下波动; 冬小麦中午叶片水势与相应的气孔导度之间, 随着叶水势的增加, 气孔导度呈现增加趋势。根据冬小麦气孔导度对空气湿度、土壤湿度和叶水势的响应规律, 研究分别采用双曲线和幂指数形式拟合了水汽响应函数, 用三段线性方程拟合了土壤湿度响应函数和植物水势响应函数, 得到的参数可以为模型模拟冬小麦的各类水、热、碳交换过程采用。  相似文献   

2.
讨论了植物气孔气态失水与SPAC系统液态供水相互作用研究领域的一些重要现象和行为.当植物水力信号和化学信号共同作用促进气孔对叶水势的调节时,植物对叶水势的调节表现为等水行为.气孔对环境湿度变化响应的反馈机制可用来解释土壤干旱条件下气孔和光合的午休现象,以及气孔导度和水流导度之间的相关关系;而气孔对环境湿度变化响应的前馈机制,则可用来解释气孔导度对大气 叶片间水汽饱和差的滞后反应.植物最大限度地利用木质部传输水分的策略,要求气孔快速响应以避免木质部过度气穴化和短时间内将气穴逆转的相应机制.  相似文献   

3.
根据玉米生育期的田间试验资料分析了土壤-植物-大气连续体中水势和水流阻力的分布,结果表明土壤与植物叶片之间的水势差在玉米抽雄期前达0.8—1.0MPa,到抽雄期以后达1.0—1.5MPa,叶片与大气之间的水势差则在抽雄期前后分别达80—120MPa和60—80MPa;连续体内的水流阻力主要在叶片与大气之间.建立了连续体中玉米叶片水势的动态模拟公式,模拟叶水势具有较高的精度.最后,揭示了叶片蒸腾速率与叶-气系统水势差和水流阻力的关系,当叶片与大气之间的水势差达90—100MPa之后,蒸腾速率随叶-气间水势差增加而减小.  相似文献   

4.
根据玉米生育期的田间试验资料分析了土壤-植物-大气连续体中水势和水流阻力的分布,结果表明土壤与植物叶片之间的水势差在玉米抽雄期前达0.8—1.0MPa,到抽雄期以后达1.0—1.5MPa,叶片与大气之间的水势差则在抽雄期前后分别达80—120MPa和60—80MPa;连续体内的水流阻力主要在叶片与大气之间。建立了连续体中玉米叶片水势的动态模拟公式,模拟叶水势具有较高的精度。最后,揭示了叶片蒸腾速率与叶-气系统水势差和水流阻力的关系,当叶片与大气之间的水势差达90—100MPa之后,蒸腾速率随叶-气间水势差增加而减小。  相似文献   

5.
根源ABA参与气孔调节的数学模拟   总被引:9,自引:0,他引:9  
建立了包括植物体内的水分传输,并有根源ABA参与的气孔调节模型,模拟了饱和水气压差(VPD)、气温、表层土壤含水量(θ_(s1))等环境因子对叶片水势、木质部汁液中ABA浓度([ABA]_x)及气孔导度的影响。结果显示,VPD和气温的变化能够改变叶片水势及气孔导度;[ABA]_x几乎不受VPD和气温变化的影响,却决定着叶片水势及气孔导度对VPD和气温变化的响应幅度;θ_(s1)影响[ABA]_x,并由此影响气孔导度,但相比之下对叶片水势的作用并不显著。  相似文献   

6.
以盆栽草莓(Fragaria×ananassa)为材料研究了水分胁迫下克隆植物草莓母株和子株间的水分调控机制及其与碳同化、光系统Ⅱ激发能分配的关系.实验材料分为匍匐茎连接和剪断两个大组,进行两步实验.第1步实验,对连接组和剪断组的所有母株控水,子株充分供水;4d后进入第2步实验,把连接组分为两小组,对其中一组充分供水子株开始控水,另一组保持不变.结果表明,土壤干旱引起母株叶片失水,并使其净光合速率和气孔导度显著降低.但是连接组中供水良好的子株能有效缓解缺水母株的水分胁迫.当供水良好的子株也开始受到干旱处理的时候,则会加剧与之相连母株的水分胁迫.受胁迫母株可以通过加强渗透调节能力和降低水势从相连子株获取水分.虽然土壤干旱会造成受胁迫母株叶片脱落酸(abscisic acid, ABA)含量的大幅度增加,但是与之相连子株的叶片ABA含量并没有增加;并且气孔导度与ABA变化趋势一致.(1)草莓母株和子株间的水分运输是由二者的水势差驱动的;(2)ABA不会通过匍匐茎在母株和子株间传递并影响相邻子株气孔导度;(3)在水分异质性较大情况下,生理整合可明显提高克隆系统的碳同化能力和光系统Ⅱ激发能利用效率.  相似文献   

7.
土壤-植物-大气连续体水热动态模拟的研究   总被引:7,自引:0,他引:7  
唐绍忠 《生态学报》1991,11(3):256-261
本文从能量平衡原理和质量守恒定律出发,描述了土壤-植物-大气连续体中的热量转换和水分输送,模拟了系统中水分和热量的动态变化过程,并用所建立的模拟模型计算了冬小麦群落的冠层温度、叶水势及系统的潜热与显热变化关系,结果表明该模型有一定的可靠性。  相似文献   

8.
根系径向流的水力学性质主要是根的径向水流导度,它取决于径向水流通道的状况。利用改进的现有原位的测定根系径向水流导度的蒸腾计技术,设计了一个简便的4室吸水测定装置,可一次性获得根本质部水势和根径向水流导度,缩短测定时间10min,确保测定精度。然后用改进的装置测定了生长在不同水分条件下冬小麦(Triticum aestivumL.)根系的径向水流导度,结果显示根系的平均径向水流导度为4.63*10^  相似文献   

9.
载于Nature,185,435(1960)的这篇文章的题目是Water Relationships of Plant in Arid and Semi Arid Conditions,作者是F.L.Milthorpe。现将其中关于水的势术语部分摘译于下: 为了明智地求算植物水分关系诸问题的数值并消除普遍混乱起见,土壤-植物-大气体系中各个部分的水分状态必须用等价的术语来表达。合乎逻辑的术语是热力学的术语,会议参加者一致同意今后采用能量术语和单位。应该用水势(土壤体系或植物体系中的水分和一个大气压下纯自由水分之间的自由能的差额)来表示通常与土壤总水分亏缺和扩散庄亏缺或吸水压相联系的量。水势为三个组份所决定:(1)渗透势,它考虑土壤溶液中或植物液汁中的全部溶解物质,通常叫做渗透压;(2)压力势,它与体系的总压力差相联系,就是说与张力计(tensiometer)水中的压力和毗连的土壤中水的压力之间的差值相联系,或者与植物细胞的膨压相联系;(3)衬质势,它取决于固体衬质及衬质的保水力量,它曾经与先前叫做土壤吸力(soil suction)或水分张力(moisture tension)的术语相联系,但在植物体系中它通常被忽略。  相似文献   

10.
水分是干旱沙区植被重建和恢复的主要限制性因子,土壤有效水分含量直接影响植物木质部水分运输能力。但是不同水分条件下不同物种、不同年龄木质部水力特性和叶片气体交换的差异以及土壤水分含量对其影响的相关研究目前尚不明确。因此,该研究以10年和30年树龄人工固沙区的柠条锦鸡儿(Caragana korshinskii)和中间锦鸡儿(C. liouana)为实验材料,研究它们在旱季和雨季下水力特性和光合特性的差异及其关系。研究结果表明,树龄对柠条锦鸡儿和中间锦鸡儿木质部导水率、导水率损失百分比、叶片水势和相对含水量等无显著的影响,而土壤水分含量对其功能性状的影响较显著。树龄和土壤水分含量均对灌木叶片光合作用有显著影响,但在土壤水分条件良好的情况下树龄对其影响不显著。此外,土壤含水量与叶片水分含量和木质部茎比导水率之间呈显著的正相关关系;木质部导水率与叶片水分状态和气孔导度也存在显著的正相关关系,而光合速率与木质部导水率和叶片水分含量存在显著正相关关系,这表明土壤水分含量通过影响木质部导水率和栓塞程度而直接影响了叶片水分状况和光合碳同化能力。总而言之,柠条锦鸡儿和中间锦鸡儿的木质部导水能力和叶片光合...  相似文献   

11.
Water uptake profile response of corn to soil moisture depletion   总被引:6,自引:1,他引:5  
The effects of soil moisture distribution on water uptake of drip‐irrigated corn were investigated by simultaneously monitoring the diurnal evolution of sap flow rate in stems, of leaf water potential, and of soil moisture, during intervals between successive irrigations. The results invalidate the steady‐state resistive flow model for the continuum. High hydraulic capacitance of wet soil and low hydraulic conductivity of dry soil surrounding the roots damped significantly diurnal fluctuations of water flow from bulk soil to root surface. By contrast, sap flow responded directly to the large diurnal variation of leaf water potential. In wet soil, the relation between the diurnal courses of uptake rates and leaf water potential was linear. Water potential at the root surface remained nearly constant and uniformly distributed. The slope of the lines allowed calculating the resistance of the hydraulic path in the plant. Resistances increased in inverse relation with root length density. Soil desiccation induced a diurnal variation of water potential at the root surface, the minimum occurring in the late afternoon. The increase of root surface water potential with depth was directly linked to the soil desiccation profile. The development of a water potential gradient at the root surface implies the presence of a significant axial resistance in the root hydraulic path that explains why the desiccation of the soil upper layer induces an absolute increase of water uptake rates from the deeper wet layers.  相似文献   

12.
Abstract. The influence of sapwood water content on the conductivity of sapwood to water was measured on stem sections of Pinus contorta. A reduction in relative water content from 100 to 90% caused permeability to fall to about 10% of the saturated value.
Pressure–volume curves of branchwood and stem sapwood of Pinus contorta and Picea sitchensis have been analysed to definè the tissue capacitance and the time constant and resistance for water movement between stored water and the functional xylem as functions of tissue water potential. Three phases in water loss were discernible. In the initial phase at high water potentials (> –0.5 MPa), the capacitance was large, the time constant long and the resistance to flow large in comparison with intermediate water potentials (−0.5 to −1.5 MPa). At still lower water potentials (−1.5 to −3.0 MPa), the time constant and resistance declined still further but the capacitance had a tendency to increase again, especially in the stemwood of Sitka spruce. Typical values in the second phase were for the time constant 5 s, for the resistance 4 × 10−13 N s m−5 and for the capacitance (change in relative water content per unit change in potential) 1×10−11 m3 Pa−1. These parameters define the availability of stored water and are being used in a dynamic model of water transport in trees.  相似文献   

13.
An experiment was conducted to determine soil and plant resistance to water flow in faba bean under field conditions during the growing season. During each sampling period transpiration flux and leaf water potential measured hourly were used with daily measurements of root and soil water potential to calculate total resistance using Ohm's law analogy. Plant growth, root density and soil water content distributions with depth were measured. Leaf area and root length per plant reached their maximum value during flowering and pod setting (0.31 m2 and 2200 m, respectively), then decreasing until the end of the growing period. Root distribution decreased with depth ranging, on average, between 34.2% (in the 0–0.25 m soil layer) and 18.1% (in the 0.75–1.0 m soil layer). Mean root diameter was 0.6 mm but most of the roots were less than 0.7 mm in diameter. Changes in plant and soil water potentials reflected plant growth characteristics and climatic patterns. The overall relationship between the difference in water potential between soil and leaf and transpiration was linear, with the slope equal to average plant resistance (0.0165 MPa/(cm3 m-1 h-1 10-3). Different regression parameters were obtained for the various measurement days. The water potential difference was inversely related to transpiration at high leaf stomatal resistance and at high values of VPD. Total resistance decreased with transpiration flux in a linear relationship (r=−0.68). Different slope values were obtained for the different measurement days. Estimated soil resistance was much lower than the observed total resistance to water flow. The change from vegetative growth to pod filling was accompanied by an increase in plant resistance. The experimental results support previous findings that resistance to water flow through plants is not constant but is influenced by plant age, growth stage and environmental conditions. A more complex model than Ohm's law analogy may be necessary for describing the dynamic flow system under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
 The use of stem sap flow data to estimate diurnal whole-tree transpiration and canopy stomatal conductance depends critically upon knowledge of the time lag between transpiration and water flux through the stem. In this study, the time constant for water movement in stems of 12-year-old Pinus taeda L. individuals was estimated from analysis of time series data of stem water flux and canopy transpiration computed from mean daytime canopy conductance, and diurnal vapor pressure deficit and solar radiation measurements. Water uptake through stems was measured using a constant-heat sapflow probe. Canopy transpiration was correlated to stem uptake using a resistance-capacitance equation that incorporates a time constant parameter. A least-squares auto-regression determined the parameters of the resistance-capacitance equation. The time constants for ten loblolly pine trees averaged 48.0 (SE = 2.0) min and the time lag for the diurnal frequency averaged 47.0 (SE = 2.0) min. A direct-cross correlation analysis between canopy transpiration and sap flow time series showed maximum correlation at an approximately 30 min lag. Residuals (model-predicted minus actual stem flow data) increased with increasing soil moisture depletion. While the time constants did not vary significantly within the range of tree sizes studied, hydraulic resistance and capacitance terms were individually dependent on stem cross-sectional area: capacitance increased and resistance decreased with stem volume. This result may indicate an inverse adjustment of resistance and capacitance to maintain a similar time constant over the range of tree sizes studied.  相似文献   

15.
Alarcón  J.J.  Domingo  R.  Green  S.R.  Sánchez-Blanco  M.J.  Rodríguez  P.  Torrecillas  A. 《Plant and Soil》2000,227(1-2):77-85
The relationship between water loss via transpiration and stem sap flow in young apricot trees was studied under different environmental conditions and different levels of soil water status. The experiment was carried out in a greenhouse over a 2-week period (November 2–14, 1997) using three-year-old apricot trees (Prunus armeniaca cv. Búlida) growing in pots. Diurnal courses of leaf water potential, leaf conductance and leaf turgor potential also were recorded throughout the experiment. Data from four days of different enviromental conditions and soil water availability have been selected for analysis. On each of the selected days the leaf water potential and the mean transpiration rates were well correlated. The slope of the linear regression of this correlation, taken to indicate the total hydraulic resistance of the tree, confirmed an increasing hydraulic resistance under drought conditions. When the trees were not drought stressed the diurnal courses of sap flow and transpiration were very similar. However, when the trees were droughted, measured of sap flow slightly underestimated actual transpiration. Our heat-pulse measurements suggest the amount of readily available water stored in the stem and leaf tissues of young apricot trees is sufficient to sustain the peak transpiration rates for about 1 hour. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
根据土壤-根系统中水分守恒和水势对水分运输作用的原理, 建立了土壤中非均匀水势作物根系吸水模型。在该模型中, 分别对一次函数和指数函数两种不同的非均匀土壤水势的表达形式建立模型, 并对非均匀水势和均匀水势下模型的解析解之间的关系进行了探讨; 利用该模型讨论根系的吸收阻力和木质部传导阻力的比率对根吸水的影响; 运用阻力比率的合理生理范围确定根生长的优化长度。结果表明: 在特定情况下, 非均匀水势下的根系吸水模型可以用于均匀水势, 对Poiseuille公式进行修正后得到的根的优化长度接近实际值。  相似文献   

17.
Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on whole-plant water relations. The rate of decline in tissue water potential with relative water content (RWC) was greater in the outer parenchyma than in the sapwood for most of the species, resulting in tissue-and species-specific differences in capacitance. Sapwood capacitance on a tissue volume basis ranged from 40 to 160 kg m-3 MPa-1, whereas outer parenchyma capacitance ranged from 25 to only 60 kg m-3 MPa-1. In addition, osmotic potentials at full turgor and at the turgor loss point were more negative for the outer parenchyma compared with the sapwood, and the maximum bulk elastic modulus was higher for the outer parenchyma than for the sapwood. Sapwood capacitance decreased linearly with increasing sapwood density across species, but there was no significant correlation between outer parenchyma capacitance and tissue density. Midday leaf water potential, the total hydraulic conductance of the soil/leaf pathway and stomatal conductance to water vapour (gs) all increased with stem volumetric capacitance, or with the relative contribution of stored water to total daily transpiration. However, the difference between the pre-dawn water potential of non-transpiring leaves and the weighted average soil water potential, a measure of the water potential disequilibrium between the plant and soil, increased asymptotically with total stem capacitance across species, implying that overnight recharge of water storage compartments was incomplete in species with greater capacitance. Overall, stem capacitance contributes to homeostasis in the diurnal and seasonal water balance of Cerrado trees.  相似文献   

18.
Abstract The effcct of the transition from fully to partially wetted soil voluine on transpiration rate and hydraulic conductance of mature citrus trees was examined in a 23-year-old, coninicrcial, sprinklerirrigated, Shanio u t i orange orchard. I rriga t i on frequency was determined by the rate of water loss from the soil, a s measured by neutron probes. The hydraulic conductance of tlic tree was coniputed from the rclationship between sap flow i n the trunk and leaf water potential. The diurnal valucs of leaf water potential and sap flow shifted towards lower levels as tlie water stored in the root zone was depleted. In the fully wetted soil volume the tree hydraulic conductance remained constant throughout the irrigation period, from June to Novcniber. However, partial wetting of the soil volume (40%) caused a reduction in the hydraulic conductance of the tree. Tlie decreased hydraulic conductance is attributed to tlie permanent interruption of water transport in part of tlie root system. Tlie rcsults of tlie experiment suggest that despite tlie increase of irrigation frequency, partial wetting intensifies water stress in tlie trees.  相似文献   

19.
Abstract. A simple method is described for estimating an average of 'effective' soil water potential at the root surface for transpiring plants. The method is based on measurements of leaf water potential and leaf conductance to water vapour in stressed plants and in well-watered controls, and uses the simple Ohm's law analogue for water flow in the soil-plant system. The technique is applied to data for field-grown apple trees and to previously published data for wheat and cowpea.  相似文献   

20.
Alarcón  J.J.  Domingo  R.  Green  S.R.  Nicolás  E.  Torrecillas  A. 《Plant and Soil》2003,253(1):125-135
Using the heat pulse and other techniques, the hydraulic architecture of apricot trees was mapped out. The flows (overall flow, flow across the four main branches) and forces (water potential differences between xylem and leaves) measured allowed us to quantify hydraulic conductance of branches and of the root/soil resistance. The experiment was carried out in a commercial orchard of 11-year-old apricot trees (Prunus armeniaca L., cv. Búlida, on Real Fino apricot rootstock) during 1 week (October 27–November 3, 1998). Three representative trees with a cylindrical trunk divided into four main branches of different sizes, orientation and local microclimate were chosen for the experiment. Sap flow was measured throughout the experimental period. Twelve sets of heat-pulse probes were used, one for each main branch. The diurnal course of the environmental conditions, the fraction of the area irradiated and leaf water relations were also considered in each main branch. The relationships between leaf water potential, xylem water potential and transpiration were established for different branches and also for the total plant. Using the slopes of these regressions, total plant conductance, the hydraulic conductance of the stem and root pathway, the hydraulic conductance of the canopy and the hydraulic conductance of each branch were estimated. Our findings show that the root conductance and the canopy hydraulic conductance are similar in magnitude. Leaf hydraulic conductance per leaf area unit was similar for each of the four branch orientations, indicating that, while the light microclimate has a dominant influence on transpiration, in this case it had little effect on the hydraulic properties of the canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号