共查询到3条相似文献,搜索用时 0 毫秒
1.
Extreme climatic events are expected to increase in frequency and magnitude as a consequence of global warming. Grasslands cover a large proportion of the European continent and contribute to both agricultural production and ecosystem services through inter and intraspecific genetic variability. This study analysed the effects of summer droughts and heat waves on the persistence and production of perennial forage grasses. Mediterranean and temperate populations of Dactylis glomerata L. and Festuca arundinacea (Schreb.) were compared at both Mediterranean and temperate sites in France. By manipulating canopy temperatures and water availability, grass swards in the field were subjected to cumulative summer and spring water deficits (CSSWD) ranging from 329 to 707 mm to test different projected climatic conditions and extreme summer events. Under controlled summer heat waves (6–21 days at a mean daily canopy temperature higher than 30–35 °C), there was no increase in membrane damage to surviving aerial tissues. Plant stress was thus mainly generated through greater soil water deficit. Under the greatest CSSWD, annual biomass production was reduced on average by 60% and 30% with temperate and Mediterranean populations, respectively. Thresholds for a significant increase in summer tiller mortality were seen at CSSWD higher than 450 mm for temperate populations and 550 mm for Mediterranean populations. The latter displayed lower predawn leaf water potentials in summer and recovered through intense tillering in the subsequent seasons. Under the most extreme CSSWD, fewer than 20% of tillers of temperate populations survived and their nitrogen uptake ability was drastically altered. The higher potential productivity of Mediterranean populations in winter was associated with greater frost sensitivity. The identification of thresholds for vulnerability and the determination of the role of genetic diversity will improve the management of plant resilience and the design of new plant material to cope with climate change. 相似文献
2.
3.
Swards of Dactylis glomerata cultivars (cvs) KM2 and Lutetia and of Lolium perenne cvs Aurora and Vigor were grown under full irrigation or prolonged summer drought (80 d) in a field experiment in the South of France.
After irrigation was withheld, leaf extension rates of all cvs fell by 90% within 9–12 d, and rapid scorching of laminae followed. Tiller mortality at the end of the drought was very different in the cocksfoot cvs (4% for KM2 and 76% for Lutetia) and intermediate (41%) for both ryegrass cvs. Following re-watering, rates of herbage regrowth were closely correlated with tiller survival. Measured minerals contributed c . 0·52 MPa to osmotic potential in all treatments, whereas water-soluble carbohydrates (WSC) contributed 0·25 MPa under irrigation and 0·46 MPa during drought.
There was no systematic difference between the two species for summer survival under severe drought, but large differences between the cocksfoot cvs. The traits most strongly associated with superior survival were: (a) a deep root system and greater water uptake at depth; (b) low water and osmotic potentials in surviving laminae, i.e. better tolerance to dehydration; (c) large pool-size of WSC reserves (fructans having degree of polymerization >4) in entire tiller bases (stubble); (d) low accumulation of proline in stubble; (e) rapid nitrogen uptake after rewatering. 相似文献
After irrigation was withheld, leaf extension rates of all cvs fell by 90% within 9–12 d, and rapid scorching of laminae followed. Tiller mortality at the end of the drought was very different in the cocksfoot cvs (4% for KM2 and 76% for Lutetia) and intermediate (41%) for both ryegrass cvs. Following re-watering, rates of herbage regrowth were closely correlated with tiller survival. Measured minerals contributed c . 0·52 MPa to osmotic potential in all treatments, whereas water-soluble carbohydrates (WSC) contributed 0·25 MPa under irrigation and 0·46 MPa during drought.
There was no systematic difference between the two species for summer survival under severe drought, but large differences between the cocksfoot cvs. The traits most strongly associated with superior survival were: (a) a deep root system and greater water uptake at depth; (b) low water and osmotic potentials in surviving laminae, i.e. better tolerance to dehydration; (c) large pool-size of WSC reserves (fructans having degree of polymerization >4) in entire tiller bases (stubble); (d) low accumulation of proline in stubble; (e) rapid nitrogen uptake after rewatering. 相似文献