首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The kinetic mechanism of the cytosolic NADP(+)-dependent malic enzyme from cultured human breast cancer cell line was studied by steady-state kinetics. In the direction of oxidative decarboxylation, the initial-velocity and product-inhibition studies indicate that the enzyme reaction follows a sequential ordered Bi-Ter kinetic mechanism with NADP+ as the leading substrate followed by L-malate. The products are released in the order of CO2, pyruvate, and NADPH. The enzyme is unstable at high salt concentration and elevated temperature. However, it is stable for at least 20 min under the assay conditions. Tartronate (2-hydroxymalonate) was found to be a noncompetitive inhibitor for the enzyme with respect to L-malate. The kinetic mechanism of the cytosolic tumor malic enzyme is similar to that for the pigeon liver cytosolic malic enzyme but different from those for the mitochondrial enzyme from various sources.  相似文献   

2.
H J Lee  G G Chang 《FEBS letters》1990,277(1-2):175-179
Pigeon liver malic enzyme (EC 1.1.1.40) has a double dimer quaternary structure. The NADP+ analogs, aminopyridine adenine dinucleotide phosphate and nicotinamide-1,N6-ethenoadenosine dinucleotide phosphate, bind to the enzyme anti-cooperatively. In the presence of non-cooperative competing ligand NADP+, the binding parameter Hill coefficients of these analogues changed very little. Binding of L-malate with enzyme-AADP+ complex first enhanced then reduced the nucleotide fluorescence. Two L-malate binding sites, with Kd values of 23-30 and 270-400 microM, respectively. for the tight and weak binding sites were postulated. A hybrid model between the sequential and pre-existing asymmetrical models was proposed for the pigeon liver malic enzyme.  相似文献   

3.
NADP-linked malic enzyme [EC 1.1.1.40] was highly purified from Escherichia coli W cells. The purified enzyme was homogeneous as judged by ultracentrifugation and gel electrophoresis. The apparent molecular weights obtained by sedimentation equilibrium analysis, from diffusion and sedimentation constants, and by disc electrophoresis at various gel concentrations were 471,000, 438,000, and 495,000, respectively. The subunit molecular weights obtained by sedimentation equilibrium analysis in the presence of 6 M guanidine hydrochloride and gel electrophoresis in the presence of sodium dodecyl sulfate were 76,000 and 82,000, respectively. The sedimentation coefficient (S(0)20, W) was 13.8S, and the molecular activity was 44,700 min-1 at 30 degrees C. The amino acid composition of the enzyme was determined, and the results were compared with those of NAD-linked malic enzyme from the same organism and those of pigeon liver NADP-linked malic enzyme. The partial specific volume was calculated to be 0.738 ml/g. The Km value for L-malate was 2.3 mM at pH 7.4. Malonate, tartronate, glutarate, and DL-tartrate competitively inhibited the activity. The saturation profile for L-malate exhibited a marked cooperativity in the presence of both chloride ions and acetyl-CoA. However, acetyl-CoA alone did not show cooperativity or produce inhibition in the absence of chloride ions. Vmax and Km were determined as a function of pH. The optimum pH for the reaction was 7.8. Inspection of the Dixon plots suggested that three ionizable groups of the enzyme are essential for the enzyme activity. In addition to the oxidative decarboxylase activity, the enzyme preparation exhibited divalent metal ion-dependent oxaloacetate decarboxylase and alpha-keto acid reductase activities. Based on the above results, the molecular properties of the enzymatic reaction are discussed.  相似文献   

4.
Structural identity of the subunits of pigeon liver malic enzyme   总被引:1,自引:0,他引:1  
Pigeon liver malic enzyme was found to have arginine, alanine, and tyrosine as the only N-terminal, N-1, and N-2 amino acids, respectively. Hydrolysis of the reduced and carboxymethylated malic enzyme by carboxypeptidase A yielded quantitative evidence for the following C-terminal sequence: -Leu-(Phe-Ala)-Ile-Leu-COOH. Fifty-five trypsin-digested peptides were separated by HPLC, in accordance with the arginine and lysine contents of each subunit. This more direct structural evidence strongly supports the conclusion that pigeon liver malic enzyme is composed of four chemically identical subunits.  相似文献   

5.
Bromopyruvate is an alkylating agent of pigeon liver malic enzyme (malate dehydrogenase (decarboxylating), EC 1.1.1.40). It combines first with the enzyme to give an enzyme-bromopyruvate complex, then reacts with a proximal -SH group, resulting in the formation of a pyruvate derivative. Bromopyruvate is also a substrate for the reductase partial reaction, and a non-competitive inhibitor of L-malate in the overall oxidative decarboxylase reaction catalyzed by this enzyme. Modification of the -SH group by this compound is accompanied by concomitant loss of both oxidative decarboxylase activity and reductase activity on bromopyruvate. Inactivation of the overall activity is partially prevented by NADP+ or NADPH, singly or in combination with L-malate.  相似文献   

6.
Summary Rabbit antibodies against pigeon liver malic enzyme (EC 1.1.1.40) were prepared. The antiserum gave single precipitation line with crude pigeon liver extract. Cross reaction was observed with partially purified malic enzyme or crude extract from chicken liver. Positive cross reaction was also observed with the concentrated cytosolic fraction of two human carcinoma cell lines which were demonstrated to contain high malic enzyme activity. All other proteins examined did not react with the antibodies. When purified pigeon liver malic enzyme was mixed with the antiserumin vitro, a time-dependent inactivation of the enzyme activity was observed. Protection of the enzyme activity against antiserum inactivation was afforded by NADP+ orL-malate. Metal Mn2+ gave little protection.  相似文献   

7.
Chang HC  Chen LY  Lu YH  Li MY  Chen YH  Lin CH  Chang GG 《Biophysical journal》2007,93(11):3977-3988
Malic enzyme is a tetrameric protein with double dimer quaternary structure. In 3-5 M urea, the pigeon cytosolic NADP+-dependent malic enzyme unfolded and aggregated into various forms with dimers as the basic unit. Under the same denaturing conditions but in the presence of 4 mM Mn2+, the enzyme existed exclusively as a molten globule dimer in solution. Similar to pigeon enzyme (Chang, G. G., T. M. Huang, and T. C. Chang. 1988. Biochem. J. 254:123-130), the human mitochondrial NAD+-dependent malic enzyme also underwent a reversible tetramer-dimer-monomer quaternary structural change in an acidic pH environment, which resulted in a molten globule state that is also prone to aggregate. The aggregation of pigeon enzyme was attributable to Trp-572 side chain. Mutation of Trp-572 to Phe, His, Ile, Ser, or Ala abolished the protective effect of the metal ions. The cytosolic malic enzyme was completely digested within 2 h by trypsin. In the presence of Mn2+, a specific cutting site in the Lys-352-Gly-Arg-354 region was able to generate a unique polypeptide with Mr of 37 kDa, and this polypeptide was resistant to further digestion. These results indicate that, during the catalytic process of malic enzyme, binding metal ion induces a conformational change within the enzyme from the open form to an intermediate form, which upon binding of L-malate, transforms further into a catalytically competent closed form.  相似文献   

8.
9.
The maximum velocity of the reaction catalyzed by the pigeon liver malic enzyme depends on the ionization of a functional group of pKa 6.7. This pKa value is independent of temperature within the range 30 degrees-49 degrees C, suggesting the ionization of a carboxyl group. The enzyme activity is inactivated by N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward reagent K) at pH 6.0 and 25 degrees C. N-Methylhydroxamine regenerates the enzymatic activity whereas glycine ethyl ester does not. The addition of Mn2+, NADP+, and L-malate to the incubation mixture decreases the inactivation rate, suggesting that the reaction takes place in the active center. The binding capacities of the modified enzyme with NADP+, L-malate, pyruvate, and Mn2+ are not impaired. The kinetic and chemical evidence indicates that the inactivation is due to the modification of a carboxyl group which may be from glutamyl or aspartyl residues of the enzyme. This carboxyl group might function as a general acid-base catalyst. A detailed mechanism in terms of the exact amino acid residues involved is proposed.  相似文献   

10.
An NADP-preferring malic enzyme ((S)-malate:NADP oxidoreductase (oxalacetate-decarboxylating) EC 1.1.1.40) with a specific activity of 36.6 units per mg of protein at 60 degrees C and an isoelectric point of 5.1 was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4. The purification procedure employed ion exchange chromatography, ammonium sulfate fractionation, affinity chromatography, and gel filtration. Molecular weight determinations demonstrated that the enzyme was a dimer of Mr 105,000 +/- 2,000 with apparently identical Mr 49,000 +/- 1,500 subunits. Amino acid composition of S. solfataricus enzyme was determined and found to be significantly higher in tryptophan content than the malic enzyme from Escherichia coli. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, S. solfataricus malic enzyme was able to catalyze the decarboxylation of oxalacetate. The enzyme absolutely required divalent metal cations and it displayed maximal activity at 85 degrees C and pH 8.0 with a turnover number of 376 s-1. The enzyme showed classical saturation kinetics and no sigmoidicity was detected at different pH values and temperatures. At 60 degrees C and in the presence of 0.1 mM MnCl2, the Michaelis constants for malate, NADP, and NAD were 18, 3, and 250 microM, respectively. The S. solfataricus malic enzyme was shown to be very thermostable.  相似文献   

11.
Malic enzyme (EC 1.1.1.39), which catalyzes L-malate oxidative decarboxylation and pyruvate reductive carboxylation, was purified to homogeneity from Streptococcus bovis ATCC 15352, and properties of this enzyme were determined. The 2.9-kb fragment containing the malic enzyme gene was cloned, and the sequence was determined and analyzed. The enzymatic properties of the S. bovis malic enzyme were almost identical to those of other malic enzymes previously reported. However, we found that the S. bovis malic enzyme catalyzed unknown enzymatic reactions, including reduction of 2-oxoisovalerate, reduction of 2-oxoisocaproate, oxidation of D-2-hydroxyisovalerate, and oxidation of D-2-hydroxyisocaproate. The requirement for cations and the optimum pH of these unique activities were different from the requirement for cations and the optimum pH of the L-malate oxidative decarboxylating activity. A sequence analysis of the cloned fragment revealed the presence of two open reading frames that were 1,299 and 1,170 nucleotides long. The 389-amino-acid polypeptide deduced from the 1,170-nucleotide open reading frame was identified as the malic enzyme; this enzyme exhibited high levels of similarity to malic enzymes of Bacillus stearothermophilus and Haemophilus influenzae and was also similar to other malic enzymes and the malolactic enzyme of Lactococcus lactis.  相似文献   

12.
Structure and properties of malic enzyme from Bacillus stearothermophilus   总被引:3,自引:0,他引:3  
The malic enzyme (EC 1.1.1.38) gene of Bacillus stearothermophilus was cloned in Escherichia coli, and the enzyme was purified to homogeneity from the E. coli clone. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, the enzyme catalyzes the decarboxylation of oxalacetate. The enzyme is a tetramer of Mr 200,000 consisting of four identical subunits of Mr 50,000. The pH optima for malate oxidation and pyruvate reduction are 8.0 and 6.0, respectively; and the optimum temperature is 55 degrees C. The enzyme strictly requires divalent metal cations for its activity, and the activity is enhanced 5-7 times by NH4+ and K+. Kinetic study shows that the values of the dissociation constant of the enzyme-coenzyme complex are 77 microM for NAD and 1.0 mM for NADP, indicating that the enzyme has a higher affinity for NAD than for NADP. The nucleotide sequence of the gene and its flanking regions was also found. A single open reading frame of 1434 base pairs encoding 478 amino acids was concluded to be that for the malic enzyme gene because the amino acid composition of the enzyme and the sequence of 16 amino acids from the amino terminus of the enzyme agreed well with those deduced from this open reading frame.  相似文献   

13.
Phosphofructokinase 2 and fructose 2,6-bisphosphatase extracted from either chicken liver or pigeon muscle co-purified up to homogeneity. The two homogeneous proteins were found to be dimers of relative molecular mass (Mr) close to 110,000 with subunits of Mr 54,000 for the chicken liver enzyme and 53,000 for the pigeon muscle enzyme. The latter also contained a minor constituent of Mr 54,000. Incubation of the chicken liver enzyme with the catalytic subunit of cyclic-AMP-dependent protein kinase in the presence of [gamma-32P]ATP resulted in the incorporation of about 0.8 mol phosphate/mol enzyme. Under similar conditions, the pigeon muscle enzyme was phosphorylated to an extent of only 0.05 mol phosphate/mol enzyme and all the incorporated phosphate was found in the minor 54,000-Mr constituent. The maximal activity of the native avian liver phosphofructokinase 2 was little affected by changes of pH between 6 and 10. Its phosphorylation by cyclic-AMP-dependent protein kinase resulted in a more than 90% inactivation at pH values below 7.5 and in no or little change in activity at pH 10. Intermediary values of inactivation were observed at pH values between 8 and 10. Muscle phosphofructokinase 2 had little activity at pH below 7 and was maximally active at pH 10. Its partial phosphorylation resulted in a further 25% decrease of its already low activity measured at pH 7.1 and in a negligible inactivation at pH 8.5. Phosphoenolpyruvate and citrate inhibited phosphofructokinase 2 from both origins non-competitively. The muscle enzyme and the phosphorylated liver enzyme displayed much more affinity for these inhibitors than the native liver enzyme. Fructose 2,6-bisphosphatase from both sources had about the same specific activity but only the chicken liver enzyme was activated about twofold upon incubation with ATP and cyclic-AMP-dependent protein kinase. All enzyme forms were inhibited by fructose 6-phosphate and this inhibition was released by inorganic phosphate and by glycerol 3-phosphate. Both liver and muscle fructose 2,6-bisphosphatases formed a 32P-labeled enzyme intermediate when incubated in the presence of fructose 2,6-[2-32P]bisphosphate.  相似文献   

14.
Pigeon liver malic enzyme (malate dehydrogenase (decarboxylating), EC 1.1.1.40) was reversibly inactivated by periodate-oxidized NADP in a biphasic manner. The reversibility could be made irreversible by treating the modified enzyme with sodium borohydride. The inactivation showed saturation kinetics and could be prevented by nucleotide (NADP or NADPH). Fully protection was afforded by the combination of NADP, Mn2+ and L-malate. Oxidized NADP was also found to be a coenzyme and noncompetitive inhibitor of L-malate in the oxidative decarboxylase reaction catalyzed by malic enzyme.  相似文献   

15.
Alanine:glyoxylate aminotransferase has been reported to be present as the apo enzyme in the peroxisomes and as the holo enzyme in the mitochondria in chick (white leghorn) embryonic liver. However, surprisingly, birds were found to be classified into two groups on the basis of intraperoxisomal forms of liver alanine:glyoxylate aminotransferase. In the peroxisomes, the enzyme was present as the holo form in group 1 (pigeon, sparrow, Java sparrow, Australian budgerigar, canary, goose, and duck), and as the apo form in group 2 (white leghorn, bantam, pheasant, and Japanese mannikin). In the mitochondria, the enzyme was present as the holo form in both groups. The peroxisomal holo enzyme was purified from pigeon liver, and the peroxisomal apo enzyme from chicken (white leghorn) liver. The pigeon holo enzyme was composed of two identical subunits with a molecular weight of about 45,000, whereas the chicken apo enzyme was a single peptide with the same molecular weight as the subunit of the pigeon enzyme. The peroxisomal holo enzyme of pigeon liver was not immunologically cross-reactive with the peroxisomal apo enzyme of chicken liver, the mitochondrial holo enzymes from pigeon and chicken liver, and mammalian alanine:glyoxylate aminotransferases 1 and 2. The mitochondrial holo enzymes from both pigeon and chicken liver had molecular weights of about 200,000 with four identical subunits and were cross-reactive with mammalian alanine:glyoxylate aminotransferase 2 but not with mammalian alanine:glyoxylate aminotransferase 1.  相似文献   

16.
T M Huang  G G Chang 《Biochemistry》1992,31(50):12658-12664
The tetrameric malic enzyme from pigeon liver was reversibly dissociated in the sequence of tetramer-dimer-monomer in an acidic environment (pH 4.5) or when the ionic strength or temperature of the solution was perturbed (0.2 M ammonium sulfate or < 10 degrees C). The dissociated monomer was enzymatically active according to the following criteria: (a) separation and direct activity staining of the monomer in the native gradient polyacrylamide gel, (b) activity staining of the monomer at its pI region in the isoelectric focusing gel, and (c) the enzyme showing lower but definite enzyme activity under conditions where only monomer existed in the solution. The catalytic constant (kcat) and specificity constant (kcat/KmMal) for the monomer were found to be 19 +/- 6 s-1 and 58 x 10(3) s-1.M-1, respectively, only one-seventh and one-seventeenth of those for the tetramer. Different types of interactions are involved in the monomer-monomer and dimer-dimer associations: (a) Two dissociation processes showed different pH dependences. The monomer-monomer interactions involve an amino acid with a side chain pKa value around 5.7, and an amino acid with a side chain pKa value of 7.2 is involved in the dimer-dimer association. (b) Ammonium sulfate up to 0.2 M only affects the monomer-monomer but not the dimer-dimer interactions. The Gibb's free energy, enthalpy, and entropy all have negative values for the above subunits' dissociations. The overall dissociation is an enthalpy-driven process. Association of the subunits to form dimers and tetramers involves salt-bridge, van der Waals, and hydrogen-bonding interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. Mitochondria isolated from abdomen muscle of crayfish Orconectes limosus exhibit malic enzyme activity in the presence of L-malate, NADP and Mn2+ ions after addition of Triton X-100. Under optimal conditions about 230 nmole of reduced NADP and an equivalent amount of pyruvate are produced per min per mg of mitochondrial protein. 2. The pH optimum for decarboxylation of L-malate is about 7.5. 3. The apparent Km for L-malate, NADP and Mn2+ ions was found to be 0.66, 0.012, and 0.0025 mM, respectively. 4. The requirement for Mn2+ can be replaced by Mg2+, Co2+ and Ni2+ ions; however, higher concentrations of these ions than Mn2+ are required for a full stimulation of malic enzyme activity. 5. Oxaloacetate and pyruvate inhibited the enzyme activity in a competitive manner with apparent Ki values of 0.05 mM and 5.4 mM, respectively.  相似文献   

18.
G G Chang  R Y Hsu 《Biochemistry》1977,16(2):311-320
Malic enzyme from pigeon liver is alkylated by the substrate analogue bromopyruvate, resulting in the concomitant loss of its oxidative decarboxylase and oxalacetate decarboxylase activities, but not its ability to reduce alpha-keto acids. The inactivation of oxidative decarboxylase activity follows saturation kinetics, indicating the formation of an enzyme-bromopyruvate complex (K congruent to 8 mM) prior to alkylation. The inactivation is inhibited by metal ions and pyridine nucleotide cofactors. Protection of malic enzyme by the substrates L-malate and pyruvate and the inhibitors tartronate and oxalate requires the presence of the above cofactors, which tighten the binding of these carboxylic acids in accord with the ordered kinetic scheme (Hsu, R. Y., Lardy, H. A., and Cleland, W. W. (1967), J. Biol. Chem. 242, 5315-5322). Bromopyruvate is reduced to L-bromolactate by malic enzyme and is an effective inhibitor of L-malate and pyruvate in the overall reaction. The apparent kinetic constants (90 muM-0.8 mM) are one to two orders of magnitude lower than the half-saturation constant (K) of inactivation, indicating a similar tightening of bromopyruvate binding in the E-NADP+ (NADPH)-Mn2+ (Mg2+)-BP complexes. During alkylation, bromopyruvate interacts initially at the carboxylic acid substrate pocket of the active site, as indicated by the protective effect of substrates and the ability of this compound to form kinetically viable complexes with malic enzyme, particularly as a competitive inhibitor of pyruvate carboxylation with a Ki (90 muM) in the same order as its apparent Michaelis constant of 98 muM. Subsequent alkylation of a cysteinyl residue blocks the C-C bond cleavage step. The incorporation of radioactivity from [14C]bromopyruvate gives a half-site stoichiometry of two carboxyketomethyl residues per tetramer, indicating strong negative cooperativity between the four subunits of equal size, or alternatively the presence of structurally dissimilar active sites.  相似文献   

19.
The effects of ferulic acid on L-malate oxidation in mitochondria isolated from soybean (Glycine max L.) seedlings were investigated. Oxygen uptake and the products of L-malate oxidation were measured under two conditions: pH 6.8 and 7.8. At acidic pH, the activity of the NAD+-linked malic enzyme (L-malate:NAD+oxidoreductase [decarboxylating] EC 1.1.1.39) was favoured, whereas at alkaline pH a predominance of the L-malate dehydrogenase activity (L-malate:NAD+oxidoreductase EC 1.1.1.37) was apparent. Ferulic acid inhibited basal and coupled respiration during L-malate oxidation either at acidic or alkaline pH, reducing also the amounts of pyruvate or oxaloacetate produced. The results suggest that the site of ferulic acid action is situated at some step that precedes the respiratory chain. An interference with the L-malate entry into the mitochondria could be an explanation for the effects of ferulic acid, but the possibility of a direct inhibition of both enzymes involved in L-malate oxidation cannot be ruled out. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The dissociations of porcine heart mitochondrial, bovine heart mitochondrial, and porcine heart cytoplasmic malate dehydrogenase dimers (L-malate: NAD+oxidoreductase, EC 1.1.1.37) have been examined by Sephadex G-100 gel filtration chromatography and sedimentation velocity ultracentrifugation. The porcine mitochondrial enzyme was found to chromatograph as subunits when applied to a gel filtration column at a concentration of .02 muM or less at pH 7.0. The presence of coenzymes shifted the dissociation equilibrium at low enzyme concentrations in favor of dimer formation. Monomer formation was also favored when procine mitochondrial enzyme was incubated at pH 5.0 even at concentrations as high as 120 muM. This shift in equilibrium has been correlated with the increased rate and specificity of sulfhydryl residue modification with N-ethylmaleimide at pH 5.0 (Gregory, E.M., Yost, F.J.,Jr., Rohrbach, M.S., and Harrison, J.H. (1971)J. Biol. Chem. 246, 5491-5497). Bovine mitochondrial enzyme did not exhibit a concentration-dependent disociation under the conditions examined. However, at pH5.0 monomer formation was favored, and correlations could again be drawn with sulfhydryl residue modification (Gregory, E.M. (1975)J.Biol. Chem. 250, 5470-5474). In both mitochondrial enzymes, coenzyme binding was found capable of overcoming the effects of pH on the dissociation equilibrium, and dimer formation was favored. Unlike either of the above mentioned enzymes, porcine cytoplasmic malate dehydrogenase did not dissociate into its monomeric form under any conditions investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号