首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A unique ichnofossil assemblage from Pennsylvanian-age sandstones near Eaton Rapids, Michigan, USA, comprises straight-to-curved traces preserved in convex hyporelief, with the transverse ridges and median grove associated with the ichnogenus Arthrophycus. The Michigan traces show some branching or pseudo-branching (also known from other Arthrophycus specimens) and are among the smallest structures (millimeters in diameter) attributed to this ichnogenus. The orientation of the Michigan Arthrophycus burrows is distinct from other ichnospecies of this taxon in the pronounced co-planar alignment of the burrows, as opposed to the multiplanar, interweaving, “bundled” nature typical of the ichnogenus. On this basis we assign the Michigan specimens to a new ichnospecies of Arthrophycus. The “paralleling behavior” of the new taxon may reflect a strategy of the tracemaker to avoid previous burrows and reflect differences in resource availability or current energy. This new taxon supports previous records of the occurrence of this ichnogenus in Upper Carboniferous strata.  相似文献   

3.
Crawfish frogs (Lithobates areolatus) have experienced declines across large portions of their former range. These declines are out of proportion to syntopic wetland-breeding amphibian species, suggesting losses are resulting from unfavorable aspects of non-breeding upland habitat. Crawfish frogs get their common name from their affinity for crayfish burrows, although the strength of this relationship has never been formally assessed. We used radiotelemetry to address 4 questions related to upland burrow dwelling in crawfish frogs: 1) what burrow types are used and how do they function to affect crawfish frog survivorship; 2) what are the physical characteristics and habitat associations of crawfish frog burrows; 3) what are the home range sizes of crawfish frogs when burrow dwelling; and 4) where are crawfish frog burrows situated with respect to breeding wetlands? We tracked crawfish frogs to 34 burrows, discovered another 7 occupied burrows, and therefore report on 41 burrows. Crawfish frogs exclusively occupied crayfish burrows as primary burrows, which they inhabited for an average of 10.5 months of the year. With one exception, crawfish frogs also used crayfish burrows as secondary burrows—temporary retreats occupied while exhibiting breeding migrations or ranging forays. Burrows were exclusively located in grassland habitats, although crawfish frogs migrated through narrow woodlands and across gravel roads to reach distant grassland primary burrow sites. Home range estimates while inhabiting burrows were 0.05 m2 (the area of the burrow entrance plus the associated feeding platform) or 0.01 m3 (the estimated volume of their burrow). Crawfish frog burrows were located at distances up to 1,020 m from their breeding wetlands. To protect crawfish frog populations, we recommend a buffer (core habitat plus terrestrial buffer) of at least 1.2 km around each breeding wetland. Within this buffer, at least 3 critical habitat elements must be present: 1) extensive grasslands maintained by prescribed burning and/or logging, 2) an adequate number of upland crayfish burrows, and 3) no soil disturbance of the sort that would destroy crayfish burrow integrity. © 2012 The Wildlife Society.  相似文献   

4.
To test for the hypothesis that Ctenomys talarum can use the earth's magnetic field for spatial orientation, we carried out field and laboratory experiments to analyse if C. talarum burrows present any geomagnetic orientation in their natural habitat, if C. talarum show any spontaneous directional preference when starting to excavate their burrows and if this subterranean rodent is capable to use the earth's magnetic field to orient towards a goal in a complex maze. No correlation between the burrowing direction and the earth's magnetic field was found. We could not find any evidence for any spontaneous directional preference when starting to excavate the burrows in C. talarum. The change of the horizontal vector of the geomagnetic field did not affect the ability of this rodent to orient towards a goal in an artificial labyrinth. Explanations for these results and other possible mechanisms of orientation that could be used by C. talarum are discussed.  相似文献   

5.
Danita S. Brandt 《Ichnos》2013,20(1):28-43
Rusophycus is an ichnogenus comprising shallow burrows generally attributed to trilobites and other arthropods. The paleoethological interpretation of these structures is not conclusively known; workers variously have attributed the ichnogenus to feeding, resting, hiding/escape, hunting or nesting behaviors. Rusophycus morphology varies from unornamented, bilobed forms to forms that preserve details of ventral anatomy of the trace maker. Rusophycus occurs as single or multiple impressions. Some examples of multiple-Rusophycus assemblages are clearly the result of the activity of a single animal (e.g., serially arranged impressions of the same size), but others represent the activity of several individuals. Associated traces representing multiple individuals are especially interesting, for they may give evidence of complex behavior, for example, interactions between the trace makers. Some of the multiple-trace assemblages show alignment (congruent anterior-posterior orientation of the individuals) suggesting rheotactic behavior; other assemblages comprise randomly oriented traces. The difference between the aligned and randomly oriented assemblages may reflect differences in the current energy and amount of available food, and may also suggest the following feeding modes for these benthic-feeding arthropods: (1) alignment with head into the current in resource-poor environments, (2) orientation with head at an oblique angle to the current in high-energy, resource-poor environments, and (3) random orientation in low-energy, resource-rich environments.  相似文献   

6.
The architectural and surficial morphologies of crayfish burrows from the Upper Triassic Chinle Formation and Holocene sediments were compared in order to determine: 1) if Triassic burrows could truly be attributed to crayfish activity; 2) how comparable the burrowing mechanisms are; and 3) whether or not a common set of burrowing signatures could be identified for both ancient and modern freshwater crayfish. Materials used in this study include burrows from the members of the Upper Triassic Chinle Formation, casts of modern burrows constructed by Procambarus clarkii Hobbs and Procambarus acutus acutus (Girard) in the laboratory, and casts of naturally constructed modern burrows of Cambarus diogenes di‐ogenes (Girard).

Triassic and Holocene crayfish burrow morphologies exhibit simple to complex architectures, varying degrees of branching, chamber, and chimney development. They also exhibit relatively textured surficial morphologies (bioglyphs) such as scrape and scratch marks, mud‐ and lag‐liners, knobby and hummocky surfaces, pleopod striae, and body impressions. Holocene crayfish construct distinctive burrows due to their conservative limb arrangement, functional morphology, and behavior with respect to environmental stimuli. Similarities between Holocene and Triassic crayfish burrows suggest that extant and Triassic crayfish employed identical burrowing mechanisms. Features of the surficial and architectural morphologies impart a distinctive signature to burrows of both ancient and modern freshwater burrowing crayfish.

Burrowing signatures of crayfish can be used to identify new and previously misinterpreted continental trace fossils. These are useful in studies of the paleohydrogeology, paleoclimatology and paleoecol‐ogy of burrow‐bearing deposits.  相似文献   

7.
Several morphological varieties of trace fossils abound in Middle and Late Triassic fluvial redbeds in the Pranhita‐Godavari Valley, south India, including Skolithos, Palaeophycus, Taenidium, escape burrows, and a type of trace very similar to ‘small stuffed burrows’ from the Triassic of Greenland. Burrow morphology was influenced by local hydrodynamic conditions. The distribution of burrows was facies controlled; some forms are restricted to channel deposits whereas others occur only in floodplains. Vertical dwelling burrows (Skolithos) occur in both channel and floodplain deposits. Horizontal structures representing deposit feeding (Taenidium) are confined to nondepositional surfaces within parallel‐laminated sandstones having parting lineations that represent catastrophically emplaced sand‐sheets in channels and proximal floodplains. Vertical escape burrows are confined to what were slowly but continually accreting parallel‐laminated sands of channel bars. Horizontal dwelling burrows (Palaeophycus) and ‘small stuffed burrows’ are virtually restricted to the smaller sandsheets of floodplain drainage systems.

The burrow assemblages do not occur as recurrent associations throughout the redbed sequence, and variations in different stratigraphic levels seem to be controlled by minor differences within a broadly similar environment. The entire assemblage has components of both the Scoyenia and Rusophycus ichnocoenoses reported from East Greenland but may be considered as the Scoyenia ichnofacies characteristic of redbeds deposited in extensive floodplains dissected by small streams, even though no Scoyenia individuals are present.  相似文献   

8.
The African giant rat Cricetomys gambianus Waterhouse is found in a wide variety of habitats in Ibadan district. These include an abandoned farm in a degraded deciduous forest, a zoological garden complex, Agodi; and a forest plantation of teak (Tectona grandis L.F.), human habitation and derived Guinea savanna. They located their burrows in the most heavily shaded parts of the habitats. Burrows were found mostly inside deserted termite mounds and amongst roots of trees probably to provide insulation from heat. They are nocturnal, omnivorous rodents, feeding on a wide variety of root crops, fruits, molluscs and insects. Fruits of the oil palm (Elaeis guineensis Jacq.) or their remains were found in all burrows. Information on habitat preferences, food habits, as well as that obtained from the dimensions and design of burrows which are reported in this paper later provided a basis for the design of cages and husbandry techniques for a programme of domestication of this rodent, which is currently being carried out at University of Ibadan, Nigeria.  相似文献   

9.
Sören Jensen 《Ichnos》2013,20(2):141-142

Vertically curved, unbranched, strongly lined burrows are prominent features of muddy outer‐shelf/offshore deposits of Cretaceous to Pleistocene age. Such burrows are usually called Terebellina, but use of this ichnogenus should be avoided for two reasons: 1) the type species of Terebellina is a large agglutinated foraminiferid referable to Bathysiphon, not a trace fossil; and 2) most trace fossils identified with Terebellina are either examples of Palaeophycus (in cases where burrows are essentially horizontal and occur individually) or Schaubcylindrichnus (where burrows are oblique to stratification and occur in aggregations or loose clusters). The replacement name S. freyi is proposed for this latter category of burrow.

These light‐colored, grain‐lined burrows are conspicuous structures in the dark‐colored, outer‐shelf mudrocks of the lower Pleistocene Rio Dell Formation. The burrows are part of a typical “distal Cruziana ichnofacies”; association of structures, including Teichichnus, Planolites, Palaeophycus, and Chondrites, occurring in thoroughly bioturbated background sediments. Schaubcylindrichnus freyi in the Rio Dell is interpreted as the dwelling structure of a gregarious, endobenthic organism, comparable to the lined burrows produced by the deposit‐feeding polychaete Clymenella.  相似文献   

10.
Krapovickas, V., Mancuso, A.C., Marsicano, C.A., Domnanovich, N.S. & Schultz, C.L. 2013: Large tetrapod burrows from the Middle Triassic of Argentina: a behavioural adaptation to seasonal semi‐arid climate? Lethaia, Vol. 46, pp. 154–169. We report the discovery of large burrow casts in the early Middle Triassic Tarjados Formation, at Talampaya National Park, north‐western Argentina. Facies analysis indicates the burrows are preserved in sandbars deposited by an ephemeral river under semi‐arid and seasonal climatic conditions. The structures are mostly preserved in longitudinal cross‐section and consist of an opening, an inclined tunnel (ramp), and a terminal chamber. The ramp is 8–14 cm in height, up to 130 cm in length and penetrates 49–63 cm bellow the palaeosurface with an inclination of 22°–30°. We studied burrow cast dimensions, overall architectural morphology, surficial marks, and compared them with other large burrows of both invertebrate and vertebrate origin. A tetrapod origin of the burrow casts was established based on: distinctive architecture, and size, which is more than twice the most common size range for large terrestrial invertebrate burrows. Comparison with other Upper Permian and Triassic tetrapod burrows allows us to identify three general morphological groups: (1) simple inclined burrows; (2) helical burrows; and (3) burrow network complexes, representing different behaviours. A study of tetrapod body fossils preserved within other Upper Permian and Triassic burrows shows that the Tarjados structures were most likely produced by non‐mammalian cynodonts. The environmental and climatic context suggests that aridity and seasonality played a fundamental role selecting burrowing behaviour in therapsids and that by the Early–Middle Triassic their burrowing behaviour attained a complexity comparable to modern mammals. □Argentina, behaviour, palaeoclimate, Permo‐Triassic, Tarjados Formation, Tetrapod burrows.  相似文献   

11.
Structures such as nests and burrows are an essential component of many organisms’ life‐cycle and require a complex sequence of behaviours. Because behaviours can vary consistently among individuals and be correlated with one another, we hypothesized that these structures would (1) show evidence of among‐individual variation, (2) be organized into distinct functional modules and (3) show evidence of trade‐offs among functional modules due to limits on energy budgets. We tested these hypotheses using the alfalfa leafcutting bee, Megachile rotundata, a solitary bee and important crop pollinator. Megachile rotundata constructs complex nests by gathering leaf materials to form a linear series of cells in pre‐existing cavities. In this study, we examined variation in the following nest construction traits: reproduction (number of cells per nest and nest length), nest protection (cap length and number of leaves per cap), cell construction (cell size and number of leaves per cell) and cell provisioning (cell mass) from 60 nests. We found a general decline in investment in cell construction and provisioning with each new cell built. In addition, we found evidence for both repeatability and plasticity in cell provisioning with little evidence for trade‐offs among traits. Instead, most traits were positively, albeit weakly, correlated (~ 0.15), and traits were loosely organized into covarying modules. Our results show that individual differences in nest construction are detectable at a level similar to that of other behavioural traits and that these traits are only weakly integrated. This suggests that nest components are capable of independent evolutionary trajectories.  相似文献   

12.
U-shaped, pouch-like burrows with parallel limbs, covered with short scratches arranged in sets, occur in the thalweg of the Oh?e river in NW Czech Republic. Similar, but smaller burrows with rare scratches, not arranged in sets, occur in the thalweg of the Drw?ca river in N Poland. Probably, they are produced by larvae and/or nymphs of Palingenia and Polymitarcis (Ephoron), respectively. In both localities, they burrowed in firmground surfaces at shallow depths. The burrowed surfaces were emerged during low water levels. A review of recent mayfly burrows shows that they are 1) U-shaped pouches with parallel limbs and septum, which may be covered with short scratches and are oriented perpendicular to the bottom, irrespective of its inclination, or 2) wide U-shape burrows with divergent limbs, which may be branched. In the fossil record, the ichnogenera Fuersichnus, Asthenopodichnium, and Rhizocorallium are partly ascribed to mayfly burrows, but their comparison to the recent burrows shows that such interpretations are somewhat problematic. The mayfly burrows are potentially good indicators of aquatic, non-marine, well oxygenated, clean water environments.  相似文献   

13.
A methodology for trace fossil identification using burrowing signatures is tested by evaluating ancient and modern lungfish and crayfish burrows and comparing them to previously undescribed burrows in a stratigraphic interval thought to contain both lungfish and crayfish burrows. Permian burrows that bear skeletal remains of the lungfish Gnathorhiza, from museum collections, were evaluated to identify unique burrow morphologies that could be used to distinguish lungfish from crayfish burrows when fossil remains are absent. The lungfish burrows were evaluated for details of the burrowing mechanism preserved in the burrow morphologies together forming burrowing signatures and were compared to new burrows in the Chinle Formation of western Colorado to test the methodology of using burrow signatures to identify unknown burrows.

Permian lungfish aestivation burrows show simple, nearly vertical, unbranched architectures and relatively smooth surficial morphologies with characteristic quasi‐horizontal striae on the burrow walls and vertical striae on the bulbous terminus. Burrow lengths do not exceed 0.5 m. In contrast, modern and ancient crayfish burrows exhibit simple to highly complex architectures with highly textured surficial morphologies. Burrow lengths may reach 4 to 5 m.

Burrow morphologies unlike those identified in Gnathorhiza aestivation burrows were found in four burrow groups from museum collections. Two of these groups exhibit simple architectures and horizontal striae that were greater in sinuosity and magnitude, respectively. One of these burrows contains the remains of Lysoro‐phus, but the burrow surface reveals no reliable surficial characteristics. It is not clear whether Lysorophus truly burrowed or merely occupied a pre‐existing structure. The other two groups exhibit surficial morphologies similar to those found on modern and ancient crayfish burrows and may provide evidence of freshwater crayfish in the Permian.

Burrows from the Upper Triassic Chinle Formation in western Colorado exhibit simple to moderately complex architectural morphologies, ranging from predominantly vertical, unbranched, with little or no chamber development to predominantly vertical, few branches, and with minor chamber development. Surficial burrow morphologies are moderate to highly textured. The burrows have scrape marks, scratch marks, mud and lag‐liners, knobby surfaces, pleopod striae, and body impressions.

Although no fossil remains of the burrowing organism were found within or associated with the Chinle burrows from western Colorado, the similarity of architectural and surficial burrow morphologies to those in the Chinle of Canyonlands, Utah and to modern crayfish burrows, clearly indicates that the Colorado burrows are the product of burrowing crayfish rather than lungfish. Evaluation of burrowing signatures preserved in the architectural and surficial burrow morphologies is a very useful tool to compare and contrast Chinle burrows from different regions on the Colorado Plateau. Documentation of crayfish burrows in the Chinle of Utah and Colorado strongly suggests that other large‐diameter Chinle burrows elsewhere on the Colorado Plateau and in stratigraphically equivalent units may also be the product of crayfish activity.  相似文献   

14.
Dasypus hybridus (Desmarest, 1804) inhabits open fields in southern South America. Burrows ofD. hybridus were cylindrical with a conical end. They had an entrance and a single tunnel without branches. Three locations of the burrows in the terrain were detected: in banks of dried waterways, near rocks, and in open field. The orientation of 29 burrow mouths was not random and, although they did not point to any cardinal point, in particular there was a strong tendency to avoid the south quadrant. In a sample area of 90 × 140 m, burrow mouths were arranged in a random spatial pattern with a density of 25.4 burrows per ha. Great variation in burrow length was found (118.8 ± 105.69 cm, CV = 89.0%). Tunnels may be used as refuges and/or for thermoregulation. The orientation of burrow mouths can also be related to thermoregulation as tunnels are covered from dominant winds, and, for many hours every day, the temperature at the mouths can be influenced by insolation. The possible existence of shelter-burrows and resting-burrows is discussed.  相似文献   

15.
Ecosystem engineers such as burrowing seabirds can increase habitat availability for sympatric taxa – but only if the burrow's owner allows other species to use the newly created shelter site. Our studies on a small Pacific island suggest that an avian burrower (the wedge‐tailed shearwater Puffinus pacificus) is both a facilitator and a competitor for amphibious seasnakes. Video camera inspection of 102 burrows revealed frequent usage of these burrows as retreat sites by the snakes, with Laticauda laticaudata restricted to burrows <4 m from the water's edge, whereas Laticauda saintgironsi often used burrows further inland. Snakes never occupied burrows that contained adult shearwaters, suggesting active burrow defence by the birds. Model snakes that we inserted into burrows were attacked, especially on the head and upper body, and we found one snake pecked to death outside a burrow. Wedge‐tailed shearwaters act as facilitators, creating a thermally favourable microhabitat and substantially enhancing habitat suitability for snakes; but they are also competitors, aggressively competing with snakes for occupancy of the resource that has been created.  相似文献   

16.
On the tidal flats of the island of Sylt (eastern part of the North Sea) the quantity of micro- and meiofauna associated with shoots of seagrass(Zostera noltii), with infaunal bivalves(Macoma balthica), and with tubes and burrows of polychaetes(Pygospio elegans, Pectinaria koreni, Nereis diversicolor, Nereis virens, Arenicola marina) was found to add up to 5 to 33 % of the overall abundance. These structures, taken together, account for 10 to 50 % of the faunal abundance on an average tidal flat at Sylt. The quantitative effect of biogenic structures at the sediment surface (casts and funnels) is small compared to that of tubes and burrows penetrating the anaerobic subsurface layer. In providing stable oxic microenvironments these elite structures frequently bring together more individuals than occur in the entire reducing sediment below surface. Faunal composition of irrigated dwellings of large infauna is different from that of the oxic surface sediment. The common denominator of all elite structures of the subsurface is an oxic halo. Burrows without such a halo are unattractive. There is no evidence that owners of burrows prey on their smaller inmates.  相似文献   

17.
ECOLOGY AND EVOLUTION OF MATING SYSTEMS OF FIDDLER CRABS (GENUS UCA)   总被引:1,自引:0,他引:1  
1. General accounts of the natural history and behaviour of fiddler crabs suggest there exist two broad mating patterns in the genus. Most western and Indo-Pacific species mate on the surface of intertidal substrates near burrows females defend. The sexes associate only briefly during courtship and mating. In contrast, males of many American species court from and defend burrows to which females come for mating. Copulation occurs underground in burrows plugged at the surface; the sexes usually remain together for at least several hours. Here we summarize and contrast recent detailed field studies of the mating systems of U. pugilator, an American species, and U. vocans, a species widely distributed in the western and Indo-Pacific. We indicate how differences in the breeding ecology of these two species may account for basic differences in modes of sexual selection leading to the two broad mating patterns in the genus. 2. U. pugilator burrows in protected sandy substrates in the upper intertidal and supratidal zone. During ebb tide, nonbreeding crabs leave burrows they occupy during high tide to forage on food-rich substrates in the lower intertidal zone. Reproductively active males remain in the burrow zone where they fight for and defend burrows from which they court. Large males win most fights for burrows and tend to defend burrows high on the elevation gradient, especially during periods with relatively high tides. Females usually approach and descend the burrows of several males before choosing their mates by remaining in males' burrows. Males remain underground with their mates for 1–3 days until after they oviposit their eggs. Some males then emerge and leave their burrows while others sequester their mates in the chambers where mating and oviposition has occurred, dig new chambers and resume courtship, perhaps attracting additional females. In either case, females remain underground for approximately 2 weeks, finally emerging to release their planktonic larvae. Burrows that do not collapse due to tidal inundation or flooding by groundwater are best for breeding and usually are located relatively high on the elevation gradient. Females choose mates indirectly by preferring to breed in burrows that will remain intact while they oviposit and incubate their eggs. Large males mate more often than small males because they are better able to defend burrows at locations females prefer to breed. The mating system of U. pugilator may be classified as resource-defence polygyny. 3. U. vocans burrows in open muddy substrates in the mid- to lower intertidal zone. At a site near Chunda Bay, Australia, where the reproductive behaviour of this species has been studied in depth, both sexes feed near burrows they defend. Females tend to occupy their burrows for longer periods and move shorter distances than do males. Mating occurs on the surface near the burrows that females defend. Females accept both resident and wandering males as mates. They show no preference for mating with larger males. Female choice may be based on other male morphological or behavioural characteristics. Females oviposit their eggs either while on the surface or in their burrows. They produce relatively small clutches and are active on the surface throughout their breeding periods. Males fight both their neighbours and wandering males. Large males tend to win fights and defend burrows in areas where large females, which produce relatively many eggs, are most dense. Such areas may offer greater protection from predators than areas occupied by smaller females. Small males mate about as often as large males but may father fewer larvae. The mating system of U. vocans is resource-free and promiscuous. 4. The mating systems of U. pugilator and U. vocans differ fundamentally in that female U. pugilator require access to a specific microenvironment to breed successfully, while female U. vocans do not. We suggest this difference occurs because of contrasts in clutch sizes and the mobility and movement patterns of feeding females. Female U. pugilator produce relatively large clutches and probably experience more intense selection from factors that can cause egg loss and mortality than do U. oocans, which produce clutches of sufficiently small volume to be protected by their abdominal flaps. Hence, the range of suitable breeding environments for U. pugilator is small compared to that for U. vocans. In addition, U. pugilator burrows in areas that are relatively food-poor, leading to daily migrations to and from food-rich substrates in the lower intertidal zone, preventing female defence of an area suitable for both breeding and feeding. U. vocans, however, burrows in areas sufficiently rich to support feeding, leading to relatively low female mobility and defence of burrows that are also suitable breeding sites. 5. Adaptive radiation of the genus Uca in the Americas is manifest by trends toward smaller adult size, higher population densities, more frequent microgeographic sympatry and increased terrestriality, compared to species in the western and Indo-Pacific regions. We outline the general features of the selection mechanisms tying each of these trends to the evolution of resource—defence mating systems. Intraspecific variation in the courtship behaviour and site of mating in U. lactea and U. vocans supports our contention that resourse—defence behaviour tends to occur at high population densities. Additional data are needed to evaluate the other hypotheses critically.  相似文献   

18.
The trace fossil Zoophycos is abundant in the shallow‐marine deposits (tempestites) of the Lower Devonian (Emsian) Yangmaba Formation in Ganxi of Sichuan, South China. It often occurs as part of complex trace fossils that comprise different integrated elements: scratch traces, simple to complex spreiten structures with marginal tubes (Zoophycos) and vertical tunnels. The complex Zoophycos burrows consist of spreiten with a marginal tube, preserved as convex hyporeliefs on the sole of an erosion surface. The exquisite, complex spreiten are interpreted to have been formed by deposit‐feeding behaviour, where the animal constructed the trace upwards without leaving faeces in the spreiten. The width of the marginal tube in different whorls is almost constant. The scratches are observed on the wall of the marginal tubes. The Zoophycos intergrades with Spongeliomorpha and Chondrites and was later cut by vertical shafts. All these features together indicate that the Zoophycos‐maker might have been a vermiform polychaete instead of a predator such as a decapod crustacean (Spongeliomorpha producer). Based on stratigraphical and ichnological features, the complex trace fossils resulted from the complex activity of different opportunistic organisms (r‐strategist) that quickly occupied and thrived within the quiet, nutrient‐rich environment after storm events.  相似文献   

19.
Factors governing the rate and direction of prairie dog (Cynomys spp.) colony expansion remain poorly understood. However, increased knowledge and ability to control these factors may lead to more effective reintroductions of prairie dogs and restoration of grassland habitats. We present density and directional analyses of the establishment of new burrows on three reintroduced colonies of Black‐tailed prairie dog (Cynomys ludovicianus) in southern New Mexico; the study colonies had been subjected to mow and burn treatments in the second year of the study. Our hypotheses were that prairie dogs will preferentially dig new burrows in the treatment plots versus control plots and that the colonies will expand in the direction of the treatment plots. The results support these hypotheses; analysis of burrow counts by site and treatment shows that prairie dogs preferentially colonized both mow and burn treatments compared to untreated areas at the periphery of the colonies. Directional analysis showed a significant posttreatment orientation of new burrows toward the treatment plots for all colonies. Our results show that the direction of expansion of prairie dog colonies can be manipulated. Effective control of the expansion of prairie dog colonies may lead to more successful reintroductions.  相似文献   

20.
Under observation, the small ocypodid crab Ilyoplax dentimerosa was found to commonly build three types of earthen structures: a barricade near its neighbour's burrow, a fence at an intermediate position between the burrows of the builder and its neighbour, and a minishelter near the builder's burrow. The sex ratio of barricade builders was found to be close to 1:1, whereas most of the fence builders were found to be female. Crabs against which barricades and fences were built, were usually smaller than the builders. Both barricade builders and fence builders had, in most cases, minishelters at the side, facing the barricade or the fence. Removal and rebuilding experiments for barricades and fences demonstrated that both structures functioned to deter the approach of the builder's neighbour to the builder's activity site. Fences also had the effect of restraining the movement of the builder toward the fence site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号