首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo.  相似文献   

2.
Forty-six monoclonal antibodies (MAbs) able to bind to the native, monomeric gp120 glycoprotein of the human immunodeficiency virus type 1 (HIV-1) LAI (HXBc2) strain were used to generate a competition matrix. The data suggest the existence of two faces of the gp120 glycoprotein. The binding sites for the viral receptor, CD4, and neutralizing MAbs appear to cluster on one face, which is presumably exposed on the assembled, oligomeric envelope glycoprotein complex. A second gp120 face, which is presumably inaccessible on the envelope glycoprotein complex, contains a number of epitopes for nonneutralizing antibodies. This analysis should be useful for understanding both the interaction of antibodies with the HIV-1 gp120 glycoprotein and neutralization of HIV-1.  相似文献   

3.
Yuan W  Craig S  Si Z  Farzan M  Sodroski J 《Journal of virology》2004,78(10):5448-5457
The synthetic peptide T-20, which corresponds to a sequence within the C-terminal heptad repeat region (HR2) of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope glycoprotein, potently inhibits viral membrane fusion and entry. Although T-20 is thought to bind the N-terminal heptad repeat region (HR1) of gp41 and interfere with gp41 conformational changes required for membrane fusion, coreceptor specificity determined by the V3 loop of gp120 strongly influences the sensitivity of HIV-1 variants to T-20. Here, we show that T-20 binds to the gp120 glycoproteins of HIV-1 isolates that utilize CXCR4 as a coreceptor in a manner determined by the sequences of the gp120 V3 loop. T-20 binding to gp120 was enhanced in the presence of soluble CD4. Analysis of T-20 binding to gp120 mutants with variable loop deletions and the reciprocal competition of T-20 and particular anti-gp120 antibodies suggested that T-20 interacts with a gp120 region near the base of the V3 loop. Consistent with the involvement of this region in coreceptor binding, T-20 was able to block the interaction of gp120-CD4 complexes with the CXCR4 coreceptor. These results help to explain the increased sensitivity of CXCR4-specific HIV-1 isolates to the T-20 peptide. Interactions between the gp41 HR2 region and coreceptor-binding regions of gp120 may also play a role in the function of the HIV-1 envelope glycoproteins.  相似文献   

4.
We have examined the influence of the V1/V2 region of the human immunodeficiency virus type 1 (HIV-1) gp120 on certain biologic properties of the virus. We observed that on the genomic background of the T-cell-line-tropic strain, HIV-1SF2mc, both the V1 and V2 domains of the macrophage-tropic strain, HIV-1SF162mc, in addition to the required V3 domain, are necessary to attain full macrophage tropism. Furthermore, the V2 domain modulates the sensitivity of HIV-1 to soluble CD4 neutralization. Structural studies of recombinant and mutant envelope glycoproteins suggest that the function of the V1/V2 region is to interact with the V3 domain and confer on the envelope gp120 of HIV-1SF2mc a conformation more similar to that of the macrophage-tropic strain HIV-1SF162mc. The conformation of the envelope gp120 appears to be strain specific and plays an important role in determining HIV-1 tissue tropism and sensitivity to soluble CD4 neutralization.  相似文献   

5.
Interaction with the CD4 receptor enhances the exposure on the human immunodeficiency type 1 gp120 exterior envelope glycoprotein of conserved, conformation-dependent epitopes recognized by the 17b and 48d neutralizing monoclonal antibodies. The 17b and 48d antibodies compete with anti-CD4 binding antibodies such as 15e or 21h, which recognize discontinuous gp120 sequences near the CD4 binding region. To characterize the 17b and 48d epitopes, a panel of human immunodeficiency virus type 1 gp120 mutants was tested for recognition by these antibodies in the absence or presence of soluble CD4. Single amino acid changes in five discontinuous, conserved, and generally hydrophobic regions of the gp120 glycoprotein resulted in decreased recognition and neutralization by the 17b and 48d antibodies. Some of these regions overlap those previously shown to be important for binding of the 15e and 21h antibodies or for CD4 binding. These results suggest that discontinuous, conserved epitopes proximal to the binding sites for both CD4 and anti-CD4 binding antibodies become better exposed upon CD4 binding and can serve as targets for neutralizing antibodies.  相似文献   

6.
T Dragic  L Picard    M Alizon 《Journal of virology》1995,69(2):1013-1018
Murine CD4+ cells are resistant to human immunodeficiency virus type 1 (HIV-1) entry and to fusion with cells expressing HIV-1 envelope glycoproteins (Env). The role of human-specific factors in Env/CD4-mediated fusion is shown by the ability of transient cell hybrids formed between CD4+ murine cells and human HeLa cells to fuse with Env+ cells. Fusion events were observed when other human cells, including erythrocytes, were substituted for HeLa cells in the hybrids. Experiments with erythrocyte ghosts showed that the factors allowing Env/CD4-mediated fusion are located in the plasma membrane. These factors were fully active after extensive digestion of erythrocytes with proteinase K or pronase. Nonprotein components of human plasma membranes, possibly glycolipids, could therefore be required for Env/CD4-mediated fusion and virus entry.  相似文献   

7.
We have previously shown that an N-glycosylation site of N306 of HIV-1 gp120 is not necessary for the HIV-1 infectivity but protects HIV-1 from neutralising antibodies. In contrast Nakayama et al. [FEBS Lett. (1998) 426, 367-372], using a virus with an identical V3 region, suggested that elimination of this particular glycan reduced the ability of T-tropic HIV to bind to CXCR4 and hence its ability to infect T cell lines. We therefore re-examined the ability of a mutant virus, lacking the N306 glycan, to replicate in various types of cells and found no change in co-receptor usage for mutant virus. The ability of mutant virus to replicate or to induce syncytia in infected cells was similar to that of wild type virus. These results corroborate our original observation, confirming that the induced mutation in the N306 glycosylation site neither impairs nor improves the ability of mutant virus to replicate in permissive cells.  相似文献   

8.
In a natural context, membrane fusion mediated by the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins involves both the exterior envelope glycoprotein (gp120) and the transmembrane glycoprotein (gp41). Perez et al. (J. Virol. 66:4134-4143, 1992) reported that a mutant HIV-1 envelope glycoprotein containing only the signal peptide and carboxyl terminus of the gp120 exterior glycoprotein fused to the complete gp41 glycoprotein was properly cleaved and that the resultant gp41 glycoprotein was able to induce the fusion of even CD4-negative cells. In the studies reported herein, mutant proteins identical or similar to those studied by Perez et al. lacked detectable cell fusion activity. The proteolytic processing of these proteins was very inefficient, and one processed product identified by Perez et al. as the authentic gp41 glycoprotein was shown to contain carboxyl-terminal gp120 sequences. Furthermore, no fusion activity was observed for gp41 glycoproteins exposed after shedding of the gp120 glycoprotein by soluble CD4. Thus, evidence supporting a gp120-independent cell fusion activity for the HIV-1 gp41 glycoprotein is currently lacking.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) infects human CD4+ cells by a high-affinity interaction between its envelope glycoprotein gp120 and the CD4 molecule on the cell surface. Subsequent virus entry into the cells involves other steps, one of which could be cleavage of the gp120 followed by virus-cell fusion. The envelope gp120 is highly variable among different HIV-1 isolates, but conserved amino acid sequence motifs that contain potential proteolytic cleavage sites can be found. Following incubation with a soluble form of CD4, we demonstrate that gp120 of highly purified HIV-1 preparations is, without addition of exogenous proteinase, cleaved most likely in the V3 loop, yielding two proteins of 50 and 70 kDa. The extent of gp120 proteolysis is HIV-1 strain dependent and correlates with the recombinant soluble CD4 sensitivity to neutralization of the particular strain. The origin of the proteolytic activity in the virus preparations remains unclear. The results support the hypothesis that cleavage of gp120 is required for HIV infection of cells.  相似文献   

10.
Human immunodeficiency virus (HIV) and simian (SIV) immunodeficiency virus entry is mediated by binding of the viral envelope glycoprotein (Env) to CD4 and chemokine receptors, CCR5 and/or CXCR4. CD4 induces extensive conformational changes that expose and/or induce formation of a chemokine receptor binding site on gp120. CD4-independent Env's of HIV type 1 (HIV-1), HIV-2, and SIV have been identified that exhibit exposed chemokine receptor binding sites and can bind directly to CCR5 or CXCR4 in the absence of CD4. While many studies have examined determinants for gp120-CCR5 binding, analysis of gp120-CXCR4 binding has been hindered by the apparently lower affinity of this interaction for X4-tropic HIV-1 isolates. We show here that gp120 proteins from two CD4-independent HIV-2 Env's, VCP and ROD/B, bind directly to CXCR4 with an apparently high affinity. By use of CXCR4 N-terminal deletion constructs, CXCR4-CXCR2 chimeras, and human-rat CXCR4 chimeras, binding determinants were shown to reside in the amino (N) terminus, extracellular loop 2 (ECL2), and ECL3. Alanine-scanning mutagenesis of charged residues, tyrosines, and phenylalanines in extracellular CXCR4 domains implicated multiple amino acids in the N terminus (E14/E15, D20, Y21, and D22), ECL2 (D187, R188, F189, Y190, and D193), and ECL3 (D262, E268, E277, and E282) in binding, although minor differences were noted between VCP and ROD/B. However, mutations in CXCR4 that markedly reduced binding did not necessarily hinder cell-cell fusion by VCP or ROD/B, especially in the presence of CD4. These gp120 proteins will be useful in dissecting determinants for CXCR4 binding and Env triggering and in evaluating pharmacologic inhibitors of the gp120-CXCR4 interaction.  相似文献   

11.
Monoclonal antibodies have been isolated from human immunodeficiency virus type 1 (HIV-1)-infected patients that recognize discontinuous epitopes on the gp120 envelope glycoprotein, that block gp120 interaction with the CD4 receptor, and that neutralize a variety of HIV-1 isolates. Using a panel of HIV-1 gp120 mutants, we identified amino acids important for precipitation of the gp120 glycoprotein by three different monoclonal antibodies with these properties. These amino acids are located within seven discontinuous, conserved regions of the gp120 glycoprotein, four of which overlap those regions previously shown to be important for CD4 recognition. The pattern of sensitivity to amino acid change in these seven regions differed for each antibody and also differed from that of the CD4 glycoprotein. These results indicate that the CD4 receptor and this group of broadly neutralizing antibodies recognize distinct but overlapping gp120 determinants.  相似文献   

12.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

13.
Hong F  Saiman Y  Si C  Mosoian A  Bansal MB 《PloS one》2012,7(3):e33659

Background & Aims

Patients coinfected with HIV-1 and HCV develop more rapid liver fibrosis than patients monoinfected with HCV. HIV RNA levels correlate with fibrosis progression implicating HIV directly in the fibrotic process. While activated hepatic stellate cells (HSCs) express the 2 major HIV chemokine coreceptors, CXCR4 and CCR5, little is known about the pro-fibrogenic effects of the HIV-1 envelope protein, gp120, on HSCs. We therefore examined the in vitro impact of X4 gp120 on HSC activation, collagen I expression, and underlying signaling pathways and examined the in vivo expression of gp120 in HIV/HCV coinfected livers.

Methods

Primary human HSCs and LX-2 cells, a human HSC line, were challenged with X4 gp120 and expression of fibrogenic markers assessed by qRT-PCR and Western blot +/− either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Downstream intracellular signaling pathways were evaluated with Western blot and pre-treatment with specific pathway inhibitors. Gp120 immunostaining was performed on HIV/HCV coinfected liver biopsies.

Results

X4 gp 120 significantly increased expression of alpha-smooth muscle actin (a-SMA) and collagen I in HSCs which was blocked by pre-incubation with either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Furthermore, X4 gp120 promoted Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and pretreatment with an ERK inhibitor attenuated HSC activation and collagen I expression. Sinusoidal staining for gp120 was evident in HIV/HCV coinfected livers.

Conclusions

X4 HIV-1 gp120 is pro-fibrogenic through its interactions with CXCR4 on activated HSCs. The availability of small molecule inhibitors to CXCR4 make this a potential anti-fibrotic target in HIV/HCV coinfected patients.  相似文献   

14.
Polyclonal B-cell activation is a characteristic feature of AIDS and of the AIDS-related complex. Since the immunoregulatory cytokine interleukin-6 (IL-6) plays a major role in inducing B-cell differentiation, we examined the effects of native human immunodeficiency virus type 1 envelope glycoproteins gp120 and gp160 on IL-6 induction. In this study, we have demonstrated that both gp120 and gp160 have the ability to induce IL-6 mRNA and biologically active IL-6 protein secretion in peripheral blood mononuclear cells in vitro. The envelope protein preparations had no detectable endotoxin as tested by the Limulus amebocyte lysate assay, and hence we can rule out the effect of contaminating endotoxin, which is a potent inducer of IL-6 in monocyte/macrophage cell cultures. In addition, we have shown that the envelope glycoproteins act directly on CD4(+)-cloned T cells to induce IL-6 production in the absence of monocytes. These findings indicate that monocytes and T cells both contribute to the secretion of IL-6, which plays an important role in the pathogenesis of B-cell activation in human immunodeficiency virus infection.  相似文献   

15.
CD4 and CCR5 mediate fusion and entry of R5 human immunodeficiency virus type 1 (HIV-1) strains. Sulfotyrosine and other negatively charged residues in the CCR5 amino-terminal domain (Nt) are crucial for gp120 binding and viral entry. We previously showed that a soluble gp120-CD4 complex specifically binds to a peptide corresponding to CCR5 Nt residues 2 to 18, with sulfotyrosines in positions 10 and 14. This sulfopeptide also inhibits soluble gp120-CD4 binding to cell surface CCR5 as well as infection by an R5 virus. Here we show that residues 10 to 18 constitute the minimal domain of the CCR5 Nt that is able to specifically interact with soluble gp120-CD4 complexes. In addition to sulfotyrosines in positions 10 and 14, negatively charged residues in positions 11 and 18 participate in this interaction. Furthermore, the CCR5 Nt binds to a CD4-induced surface on gp120 that is composed of conserved residues in the V3 loop stem and the C4 domain. Binding of gp120 to cell surface CCR5 is further influenced by residues in the crown of the V3 loop, C1, C2, and C3. Our data suggest that gp120 docking to CCR5 is a multistep process involving several independent regions of the envelope glycoprotein and the coreceptor.  相似文献   

16.
Mutant gp120 glycoproteins exhibiting a range of affinities for CD4 were tested for ability to form syncytia and to complement an env-defective provirus for replication. Surprisingly, gp120 mutants that efficiently induced syncytia and/or complemented virus replication were identified that exhibited marked (up to 50-fold) reductions in CD4-binding ability. Temperature-dependent changes in gp120, which result in a seven- to ninefold increase in affinity for CD4, were shown not to be necessary for subsequent membrane fusion or virus entry events. Mutant glycoproteins demonstrating even relatively small decreases in CD4-binding ability exhibited reduced sensitivity to soluble CD4. The considerable range of CD4-binding affinities tolerated by replication-competent HIV-1 variants has important implications for antiviral strategies directed at the gp120-CD4 interaction.  相似文献   

17.
We recently described a sequence similarity between the small ruminant lentivirus surface unit glycoprotein (SU) gp135 and the second conserved region (C2) of the primate lentivirus gp120 which indicates a structural similarity between gp135 and the inner proximal domain of the human immunodeficiency virus type 1 gp120 (I. Hötzel and W. P. Cheevers, Virus Res. 69:47–54, 2000). Here we found that the seven-amino-acid sequence of the gp120 strand β25 in the C5 region, which is also part of the inner proximal domain, was conserved in the SU of all lentiviruses in similar or identical positions relative to the carboxy terminus of SU. Sequences conforming to the gp135-gp120 consensus for β-strand 5 in the C2 region, which is antiparallel to β25, were then sought in the SU of other lentiviruses and retroviruses. Except for the feline immunodeficiency virus, sequences similar to the gp120-gp135 consensus for β5 and part of the preceding strand β4 were present in the SU of all lentiviruses. This motif was highly conserved among strains of each lentivirus and included a strictly conserved cysteine residue in β4. In addition, the β4/β5 consensus motif was also present in the conserved carboxy-terminal region of all type A and B retroviral envelope surface glycoproteins analyzed. Thus, the antiparallel β-strands 5 and 25 of gp120 form an SU surface highly conserved among the lentiviruses and at least partially conserved in the type A and B retroviral envelope glycoproteins.Lentiviruses are a group of strictly exogenous retroviruses that infect a range of mammalian hosts. One characteristic of this group of retroviruses is the rapid sequence divergence observed between virus strains as well as different lentiviruses, which resulted in the evolution of viruses with large differences in genome organization and sequence (20). Most of the sequence homology between highly divergent lentiviruses is present in the gag and pol gene products (8, 21). Sequence homology between the envelope glycoproteins of different lentiviruses has previously been shown to occur only in the ectodomain of the transmembrane subunit (TM) but not in the surface unit (SU) glycoprotein (3, 8, 2123). Due to this apparent lack of sequence conservation in lentiviral SU, it has been unclear how the SU of different lentiviruses are structurally related to each other. To address this question, we recently compared SU sequences from the gp120 from primate lentiviruses and the gp135 of small ruminant lentiviruses and found a statistically significant sequence similarity between the second conserved region (C2) of gp120 and a 99-amino-acid region from gp135 (10). Analysis of this gp120-gp135 sequence similarity in the context of the gp120 structure revealed a partial structural similarity between gp120 and gp135.The human immunodeficiency virus type 1 (HIV-1) gp120 core bound to CD4 is composed of two major domains, the inner and outer domains, and a minidomain composed of four antiparallel β-strands, the bridging sheet (13). Sequences from the C2 region form most of the β-strands of a two-helix, two-strand bundle and a five-stranded β-sandwich in the inner domain as well as some β-strands of the outer domain of gp120 (13). Most of the similarity motifs between gp135 and the C2 region of gp120 coincide with sequences corresponding to β-strands 4 through 8 in the HIV-1 gp120 inner domain and β-strands 11 and 12 in the outer domain (10). Significantly, all four cysteines that form two disulfide bonds in the proximal region of the gp120 inner domain as well as the first cysteine of the gp120 V3 loop in β12 (13, 15) are conserved in gp135, indicating a partial similarity between the tertiary structures of gp120 and gp135 (10).The most conserved sequences between gp120 and gp135 correspond to strands β4 and β5 in the five-stranded β-sandwich structure of the proximal region of the inner proximal domain of HIV-1 gp120. Two additional β-strands in this five-stranded β-sandwich are derived from C1 and C5 sequences of HIV-1 gp120 (13). We hypothesized that C1 and C5 sequences, which are part of a structurally conserved SU inner proximal domain, should also be conserved between gp120 and gp135 and possibly in the SU of other lentiviruses. Here we show that two short motifs located in the gp120 C2 and C5 regions which are part of an antiparallel β-sheet in the gp120 inner proximal domain are conserved in the lentiviruses, indicating that a surface of the inner domain of HIV-1 gp120 is conserved in the SU of other lentiviruses. In addition, the C2 motif is also present in the envelope glycoproteins encoded by A-type endogenous retroviral elements and type B retroviruses (type A and B retroviruses), suggesting a local structural similarity between the SU of lentiviruses and type A and B retroviruses.

Sequence motif of the C5 region of HIV-1 gp120 is present in the SU of all lentiviruses.

As the sequences of three of the five β-strands of the gp120 inner proximal domain β-sandwich are conserved in gp135, we first tried to determine whether the gp120-gp135 sequence similarity extends to the other two β-strands which are part of this structure. One of these strands is β1, located in the C1 region of gp120 (13). Although the sequence of β1 is relatively well conserved among the primate lentiviruses, it is only 3 amino acids long, and a reliable assignation of similar sequences in gp135 could not be done. The other strand of this β-sandwich structure is the 7-amino-acid long β25. This strand is antiparallel to β5, which is the most conserved sequence between gp120 and gp135 (10, 13). Strand β25 is located about 20 amino acid residues upstream from the carboxy terminus of HIV-1 gp120 in the C5 region, and its sequence is highly conserved among strains of primate lentiviruses (sequence KYKVVKI in HIV-1HXB2; residues conserved between HIV-1 strains are underlined) (12, 24). The last residue of this motif has been shown to be important for anchoring of gp120 on gp41 (9), suggesting that β25 is a functionally important structure of the inner proximal domain of gp120 likely to be conserved in other lentiviral glycoproteins. Sequences similar to the HIV-1 gp120 β25 motif (C5 motif) were visually sought in the gp135 carboxy-terminal region. A similar sequence was found in the caprine arthritis-encephalitis virus (CAEV) and visna virus gp135 between 33 and 34 amino acid residues upstream from the carboxy terminus of gp135 (Fig. (Fig.1B).1B). Similar to the C5 motif sequence of primate lentiviruses, the gp135 C5 motif is highly conserved in the gp135 of small ruminant lentiviruses (4, 27, 31, 35, 36). The sequence similarity also included the strictly conserved residue L483 of HIV-1 gp120 in the preceding α-helix 5, which is part of the two-helix, two-strand bundle of the inner domain. Flanking regions of gp120 and gp135 did not show any sequence similarity (not shown). Due to its short length, the significance of the conservation of the C5 motif in gp120 and gp135 was unclear. If this motif is indeed part of a structurally or functionally important domain of SU and not due only to chance, it should also be conserved in the SU of other lentiviruses. Therefore, to establish the relevance of this sequence similarity, we determined whether the C5 motif was also present in the carboxy terminus of the SU of other lentiviruses. Open in a separate windowFIG. 1Alignment of the C2 (A) and C5 (B) motifs of the SU from lentiviruses and type A and B retroviruses. Numbers at the right of the alignments indicate the position of the last residue of the motif from the initiation codon. Letters above the alignment indicate residue positions within each motif. Black backgrounds represent identical amino acids or conservative variations between the lentiviruses and type A and B retroviruses for each position of the motifs. Gray backgrounds represent identical amino acids or conservative variations between the lentiviruses and type A and B retroviruses (but which are nonconservative with the residues in black background) for each position. Numbers in parentheses indicate the number of amino acids between the last position of the C5 motif and the carboxy terminus of SU for each lentivirus. Thick lines indicate sequences which are part of HIV-1 gp120 strands β4, β5, and β25 and helix α5 (13). HIV-1 and HIV-2, human immunodeficiency virus types 1 (strain HXB2, GenBank accession number K03455) and 2 (strain ROD, X05291); CAEV, caprine arthritis-encephalitis virus (M33677); Visna, visna virus (M10608); JSRV, jaagsiekte sheep retrovirus (M80216); EIAV, equine infectious anemia virus (AF033820); FIV, feline immunodeficiency virus (M73965); BIV, bovine immunodeficiency virus (M32690); JDV, jembrana disease lentivirus (U21603); HERV-K, human endogenous retrovirus K, type 2 genome (X82272); MMTV, mouse mammary tumor virus (X01811); MIAE, mouse intracisternal A-type element (M73818).Sequences conforming to the C5 motif consensus were also found in the SU of the equine infectious anemia virus (EIAV), feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), and the bovine jembrana disease lentivirus (JDV), 19 to 23 amino acid residues from the carboxy terminus of SU, the same relative position as the C5 motif from the carboxy terminus of gp120 in primate lentiviruses (Fig. (Fig.1B).1B). This sequence similarity was clear when considering the chemical similarities of amino acid side chains (Gln/Glu, Tyr/Trp, Lys/Arg/Gln, Val/Leu, or Val/Ile). A survey of lentiviral SU sequences present in GenBank revealed that the C5 motif was also highly conserved between EIAV, FIV, and BIV strains. For example, the C5 motif was found to be strictly conserved in 64 of 69 EIAV gp90 sequences in GenBank and is also stable during in vivo persistent infection (16, 39). However, the little variation that is observed between strains of a given lentivirus follows the same pattern as variation between different lentiviruses, suggesting a common constraint on sequence variation in different lentiviruses. For example, position h of the C5 motif of HIV-1 gp120 can be either of the conservative variations Lys/Arg or Gln/Glu, the same amino acids present at position h in other lentiviruses. Similarly, position h of the C5 motif of CAEV in different strains is either Lys or Arg (35), two of the residues allowed at position h in HIV-1 gp120. In addition, position b in the C5 motif of most FIV gp100 sequences in GenBank is the conservative variation Gln or Glu, the same amino acids present at position b of the C5 motif in EIAV and the small ruminant lentiviruses, respectively. Although the C5 motif is present in all lentiviruses, the flanking sequences were not consistently conserved except for a few amino acids in some pairwise alignments (not shown). Therefore, although conservation of the C5 motif may not be statistically significant in some SU pairwise alignments, the presence of this motif in the same position relative to the carboxy terminus of SU in all lentiviruses indicates that strand β25 of gp120 is an important structural or functional domain conserved in all lentiviruses.

Sequences similar to an HIV-1 gp120 C2 motif are present in the SU of most lentiviruses.

Using computer-assisted searches, we were previously unable to find in EIAV, BIV, or FIV the same extensive region of similarity that is observed between the C2 region of gp120 and gp135 (10). However, the presence of the C5 (β25) motif in all lentiviruses suggests that sequences similar to gp120 β5, which is antiparallel to β25 and conserved between gp120 and gp135, are also present in degenerate form in other lentiviruses. Visual examination of SU sequences from different lentiviruses revealed the presence of a similar motif (C2 motif) in EIAV, BIV, and JDV although not in FIV (Fig. (Fig.1A).1A). This 12-amino-acid C2 motif encompasses most of gp120 β-strands 4 and 5 and includes a strictly conserved cysteine residue in the β4 region. The C2 motif is highly conserved between strains of EIAV and BIV. In EIAV, the C2 motif is stable during persistent infection, with few conservative changes observed (16, 39). In addition, the C2 motif was found to be strictly conserved in 176 of 179 EIAV gp90 sequences present in GenBank, despite considerable sequence variation in other regions.Although some positions of the C2 motif were not absolutely conserved, we found a common pattern of variation between distantly related lentiviruses. For example, position f of the C2 motif is either Pro in EIAV, HIV-2, and simian immunodeficiency virus or aromatic (Tyr or Trp) in the small ruminant lentiviruses BIV and JDV. Also, position h can be either Phe or Tyr even in closely related lentiviruses (HIV-1/HIV-2, visna virus/CAEV, or BIV/JDV), and position l can be either Arg or Lys in the primate and small ruminant lentiviruses or Gln, which is a common conservative substitution for Arg and Lys, in EIAV, BIV, and JDV. Therefore, the C2 motifs of different lentiviruses appear to have a common constraint on sequence variation, suggesting a structural or functional similarity between the HIV-1 gp120 C2 domain and the SU of EIAV, BIV, and JDV.The other previously described gp120-gp135 conserved motifs outside the β4/β5 region could not be identified in the SU of other lentiviruses, including the sequence of gp120 β8, which has a cysteine forming a disulfide bond with the conserved β4 cysteine. Although the C2 motif was not present in FIV gp100, a similar motif was identified in a location upstream from the FIV gp100 V3 region (sequence SYCTDPLQIPLI, amino acids 318 to 329; conserved residues are underlined), in a similar relative position from gp100 V3 as the C2 motif from the V3 region of HIV-1 gp120. However, some of the highly conserved positions of the motif (positions g, h, and j) were not conserved in FIV gp100, and the significance of this FIV gp100 motif is unclear.

C2 motif is present in type A and B retroviral envelope surface glycoproteins.

The conservation of two short motifs in distant regions of SU that are located close to each other in the tertiary structure of HIV-1 gp120 suggests that this region represents a domain of SU that is of structural or functional importance. The TM ectodomains from lentiviruses and type B retroviruses have been shown to have some sequence similarity (19, 34, 38). Therefore, we asked whether sequence similarity between the Env of lentiviruses and type B retroviruses extends to the C2 and C5 motifs of SU.The type A and B retroviruses have some sequence homology in SU, and most of the sequence homology is located in the carboxy-terminal region of SU (18, 38). Visual examination of SU sequences from the human endogenous retrovirus K (18), mouse intracisternal A-type element (26), the exogenous/endogenous mouse mammary tumor virus (25), and the exogenous/endogenous type B/D jaagsiekte sheep retrovirus (JSRV) and the closely related ovine enzootic nasal tumor virus (which encode type B retroviral envelopes) (6, 38) revealed a sequence closely related to the C2 motif in their conserved carboxy-terminal region (Fig. (Fig.1A).1A). This sequence represents one of the most conserved sequences in the SU of this group of retroviruses and is also conserved among different strains or members of endogenous families (not shown). Some positions of the C2 motif, such as positions c, d, and g, are strictly or almost completely conserved between the lentiviruses and type A and B retroviruses. However, more informative than the sequence similarity between lentiviruses and type A and B retroviruses is the lack of distinction between the patterns of sequence variation for each position of the motif within and between retrovirus groups, even between closely related viruses. For example, position e of the C2 motif within both the lentiviruses and type A and B retroviruses can be either Pro or basic/Gln; the “dimorphic” position f encodes only Tyr/Trp or Pro (except in HIV-1); position h encodes either Phe or Tyr in all sequences; position i encodes either Ala or a hydrophobic residue in most sequences; position j encodes either Ile, Leu, or Phe in all sequences; position k encodes either Leu, Ile, or Val in all sequences; and position l is preferentially Lys, Arg, or Gln in the lentiviruses and JSRV. Most of these degenerate positions represent very conservative variations (positions a and h through l) or a restricted number of nonconservative variations (positions e and f, in the turn between β4 and β5). The sequence conservation and common pattern of variation between the C2 motifs of lentiviruses and type A and B retroviruses indicate a similar structural or functional constraint on sequence variation in the SU of these two groups of viruses.In contrast to the type A and B retroviruses, sequences similar to the C2 or C5 motifs could not be found in the SU of the Moloney murine leukemia virus, bovine leukemia virus, human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2), Rous sarcoma virus, feline RD114 endogenous retrovirus, baboon endogenous retrovirus, feline leukemia virus type A, the Mason-Pfizer monkey retrovirus, or any spumaretrovirus even when using the Findpatterns program of the GCG package (7).Here we show that two short SU motifs are highly conserved in the lentiviruses and that one of these motifs is also conserved in the type A and B retroviruses. Many of the pairwise alignments were not statistically significant when tested by the Monte Carlo simulation of the Bestfit program of the GCG package and could therefore be attributed to chance. However, when all lentiviral sequences are included in the analysis and the multiple alignment is interpreted in the context of the X-ray structure of HIV-1 gp120, the conserved C2 and C5 motifs have a clear structural significance. The conservation of these motifs indicates that the region of the HIV-1 gp120 inner proximal domain centered on the antiparallel β-strands 5 and 25 forms a highly conserved lentiviral SU surface and suggests a possible structural similarity between the SU of lentiviruses and type A and B retroviruses in that domain. Although the C2 motif is too short to rule out convergent evolution between the SU of lentiviruses and type A and B retroviruses, their sequence similarity in TM (19, 34, 38) supports a common origin for most or the entire env genes of these two retroviral groups.The reason for the disagreement between the different degrees of sequence similarity in the SU of lentiviruses and the phylogenetic analyses of the pol gene products is unclear but probably reflects differences in evolutionary rates in different lentiviruses or recombination events (19, 20). Precedents for recombination events between env genes of closely or distantly related retroviruses, deduced from phylogenetic analyses, have been described. An exchange of env sequences probably occurred between HTLV-1 and HTLV-2 (19) and between a type C retrovirus closely related to the avian reticuloendotheliosis virus and a type B retrovirus which originated the type D retroviruses (19, 38).Modeling of the trimeric SU complex on the virion surface indicates that strands β5 and β25 form part of the most virion-proximal surface of the gp120 core (14, 37). While none of the residues of the C2 motif was directly tested for interactions with TM, at least one of the residues of β25 in the C5 region of HIV-1 gp120, I491, is important for stable SU-TM interactions (9). Therefore, the conserved lentiviral SU surface may represent a common structure among lentiviruses and possibly type A and B retroviruses for anchoring SU on TM in the envelope glycoprotein complex. It is interesting that the C5 motif region, which forms a β-strand in the CD4-bound gp120 core, is included in a computer-modeled pocket structure postulated to be important in SU-TM interactions (28), suggesting a structural basis for SU shedding upon receptor-induced conformational change.The sequence of the HIV-1 gp120 outer domain, shown as a cross-hatched box in Fig. Fig.2,2, is included entirely between the C2 and C5 motifs (13). Our previous sequence analysis indicates that the gp135s of small ruminant lentiviruses have a similar inner/outer domain organization: most strands of the inner domain β-sandwich as well as β12, located in the outer domain immediately upstream from the gp120 V3 loop, are conserved between gp135 and the gp120 of primate lentiviruses (10). The identification of a homologue of gp120 β25 in gp135 about 290 amino acid residues downstream from the C2 motif provides further support for a similar domain organization in the SU of primate and small ruminant lentiviruses. Consistent with this interpretation, the putative outer domain of gp135, located between the C2 and C5 motifs, is highly glycosylated and contains more than 80% of the potential N-linked glycosylation sites of gp135 (11), similar to the heavy glycosylation of the gp120 outer domain (37). In this gp135 domain model, the distance between the C2 and C5 motifs in the primary structure of SU would indicate a larger relative size of the putative outer domain of gp135 than gp120 outer domain. The presence of the C2 and C5 motifs in EIAV, BIV, and JDV would also suggest an analogous inner/outer domain organization for the SU of these lentiviruses. However, the shorter sequence between the C2 and C5 motifs in EIAV, BIV, and JDV may indicate either a much smaller or absent outer domain in the SU of these viruses (Fig. (Fig.2).2). The conserved C2 motif of EIAV gp90 was shown to be part of a minor neutralization epitope recognized by a murine monoclonal antibody (1), suggesting that the EIAV C2 motif is better exposed on the virion surface than the C2 motif of gp120, compatible with a smaller or absent outer domain in gp90. Interestingly, the C2 motif of type A and B retroviruses is located in the carboxy terminus of SU (Fig. (Fig.2)2) and C5 appears to be absent, indicating that the surface glycoproteins of type A and B retroviruses, although possibly structurally related to the SU of lentiviruses, probably lack an outer domain homologue and have a different domain organization than the SU of lentiviruses. Open in a separate windowFIG. 2Location of the C2 and C5 motifs in retrovirus envelope glycoproteins. The Env glycoproteins (excluding the amino-terminal leader peptide) are drawn to scale and aligned by the SU-TM cleavage sites conserved in all retroviruses (dotted line). The SU and TM domains of Env are indicated by double arrows. The boundaries of the C2, V3, and C5 regions of HIV-1 gp120 are indicated by thick lines above the alignment, and the location of the HIV-1 gp120 outer domain sequence is shown by a cross-hatched box. The black and gray boxes in the SU domain indicate the positions of the C2 and C5 motifs, respectively. Asterisks represent the described PNDs of EIAV (1), visna virus (29), FIV (17), and T-cell-adapted strains of HIV-1 (33) and HIV-2 (2).The two conserved colinear motifs of lentivirus SU could be useful as structural points of reference for comparative structural studies of SU from different lentiviruses. Variable domains of SU are important in the mechanisms of host cell invasion, tropism determination, and immune evasion. In HIV-1, the third variable loop V3 of gp120 is the main target of neutralizing antibodies in tissue culture-adapted strains and also determines coreceptor usage and tropism (5, 30, 32, 33). Whether sequences in variable regions of SU in other lentiviruses that are functionally equivalent to the gp120 V3 loop are also structurally related to the gp120 V3 loop is not clear. The position of variable domains relative to the C2 and C5 motifs could therefore indicate their structural relationship. For example, the principal neutralization domain (PND) of EIAV gp90, postulated to be functionally equivalent to the gp120 V3 loop (1, 16), is located upstream from the C2 motif instead of downstream, as the V3 loop in gp120 is (Fig. (Fig.2),2), suggesting that the gp90 PND and the gp120 V3 loop, while having similar roles in evasion of humoral immune responses, may not be structurally related to each other. A similar situation also occurs in visna virus, whose PND, located in the carboxy-terminal region of gp135 (29), was previously shown to be structurally unrelated to the HIV-1 gp120 V3 loop (10). This would indicate that different lentiviruses may have evolved different regions of a primordial lentivirus surface glycoprotein to perform similar functions important in virus-host interactions.  相似文献   

18.
In this study, we evaluated the effects of human immunodeficiency virus type 1 (HIV-1) and its gp120 protein on interleukin-10 (IL-10) expression in cultured human monocytes/macrophages. Infection of either 1-day monocytes or 7-day monocyte-derived macrophages with HIV-1 strain Ba-L resulted in clear-cut accumulation of IL-10 mRNA at 4 and 24 h. Likewise, treatment of these cells with recombinant gp120 induced IL-10 mRNA expression and caused a marked increase in IL-10 secretion. Monoclonal antibodies to gp120 strongly inhibited recombinant gp120-induced IL-10 secretion by monocytes/macrophages. Moreover, the addition of IL-10 to monocytes/macrophages resulted in a significant inhibition of HIV-1 replication 7 and 14 days after infection. On the whole, these results indicate that HIV-1 (possibly through its gp120 protein) up-regulates IL-10 expression in monocytes/macrophages. We suggest that in vivo production of IL-10 by HIV-primed monocytes/macrophages can play an important role in the early response to HIV-1 infection.  相似文献   

19.
We have compared the expression of full-length gp160 envelope protein from human immunodeficiency virus type 1 with that of a deletion mutant lacking the N-terminal 31 amino acids of the mature protein (gp160 delta 32). The gp160 and gp160 delta 32 proteins are processed to yield gp41 and gp120 or gp120 delta 32, respectively. In contrast to full-length gp120, gp120 delta 32 failed to associate with gp41 at the cell surface, despite conformational integrity as judged by soluble CD4 binding. Thus, the N-terminal 31 amino acids of gp120, which contain hyperconserved sequences, are likely involved in forming a contact site for gp41.  相似文献   

20.
C D Weiss  J A Levy    J M White 《Journal of virology》1990,64(11):5674-5677
The oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein (gp120) was examined by treating infectious virions with chemical cross-linking agents and subjecting the protein to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and velocity centrifugation. Immunoblots of cross-linked samples revealed three gp120 bands and an approximately threefold shift in gp120 sedimentation. Our finding of cross-linking solely between gp120 suggests that the gp120 subunits are closely associated in the native envelope structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号