首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important and promising group of compounds that have a chemopreventive property are organosulfur compounds, such as isothiocyanates (ITCs). In recent years, it has been shown that ITCs induce apoptosis in various cancer cell lines and experimental rodents. During the course of apoptosis induction by ITC, multiple signal-transduction pathways and apoptosis intermediates are modulated. We have also clarified the molecular mechanism underlying the relationship between cell cycle arrest and apoptosis induced by benzyl isothiocyanate (BITC), a major ITC compound isolated from papaya. The exposure of cells to BITC resulted in the inhibition of the G2/M progression that coincided with not only the up-regulated expression of the G2/M cell cycle arrest-regulating genes but also the apoptosis induction. The experiment using the phase-specific synchronized cells demonstrated that the G2/M phase-arrested cells are more sensitive to undergoing apoptotic stimulation by BITC than the cells in other phases. We identified the phosphorylated Bcl-2 as a key molecule linking the p38 MAPK-dependent cell cycle arrest with the JNK activation by BITC. We also found that BITC induced the cytotoxic effect more preferentially in the proliferating normal human colon epithelial cells than in the quiescent cells. Conversely, treatment with an excessive concentration of BITC resulted in necrotic cell death without DNA ladder formation. This review addresses the biological impact of cell death induction by BITC as well as other ITCs and the involved signal transduction pathways.  相似文献   

2.
Calcium (Ca2+) is a ubiquitous second messenger that regulates various activities in eukaryotic cells. Especially important role calcium plays in excitable cells. Neurons require extremely precise spatial-temporal control of calcium-dependent processes because they regulate such vital functions as synaptic plasticity. Recent evidence indicates that neuronal calcium signaling is abnormal in many of neurodegenerative disorders such as Alzheimer’s disease (AD), Huntington’s disease (HD) and Parkinson’s disease (PD). These diseases represent a major medical, social, financial and scientific problem, but despite enormous research efforts, they are still incurable and only symptomatic relief drugs are available. Thus, new approaches and targets are needed. This review highlight neuronal calcium-signaling abnormalities in these diseases, with particular emphasis on the role of neuronal store-operated Ca2+ entry (SOCE) pathway and its potential relevance as a therapeutic target for treatment of neurodegeneration.  相似文献   

3.
Recently we reported that Toll-like receptor 4 (TLR4)-positive immune cells of unknown identity were responsible for the LPS-induced depression of cardiac myocyte shortening. The aim of this study is to identify the TLR4-positive cell type that is responsible for the LPS-induced cardiac dysfunction. Neither neutrophil depletion alone nor mast cell deficiency had any impact on the impairment of myocyte shortening during LPS treatment. In contrast, LPS-treated, macrophage-deficient mice demonstrated a partial reduction in shortening compared with saline-treated, macrophage-deficient mice. Because the removal of macrophages could only partially restore myocyte shortening, we also investigated the effects of removing both neutrophils and macrophages on myocyte shortening. Interestingly, endotoxemic, neutrophil-depleted, and macrophage-deficient mice had completely restored myocyte shortening. Because both macrophages and neutrophils can produce nitric oxide (NO) and TNF-alpha, we examined LPS-treated inducible NO synthase knockout (iNOSKO) mice and TNF receptor (TNFR)-deficient mice. Eliminating both TNFR1 and TNFR2 was required to restore myocyte shortening during LPS treatment, whereas iNOS deficiency had no effect. These data suggest that macrophages and to a lesser degree neutrophils cause cardiac impairment, presumably via TNF-alpha.  相似文献   

4.
Sepsis is an often-fatal response of the immune system against microbial pathogens. The molecular mechanisms that have been designed to protect the host from invading pathogens are responsible for the damage and injury. It is now widely known that this crucial response of the immune system is mediated by innate immunity, which employs a plethora of pattern recognition receptors that recognise motifs expressed by pathogens. A lack of knowledge of the mediators involved in innate recognition has led to unsuccessful attempts at designing effective therapeutic interventions for sepsis. However, in recent years, great leaps forward have been achieved in our knowledge of these mediators. In this review we attempt to unravel the molecular mechanisms underlying bacterial recognition, particularly recognition of bacterial lipopolysaccharide, and we propose future potential therapeutic targets for septic shock.  相似文献   

5.
Insect duets: underlying mechanisms and their evolution   总被引:5,自引:0,他引:5  
Abstract. Duetting between the sexes in insects involves the use of airborne acoustic signals, substrate vibration and bioluminescence. Unlike avian duets, in which females may initiate the interaction, among insects the duet starts with the male, and the female usually provides a brief reply. Insect duets are characterized by low variance in the reply latency of the female (the time between a key element in the male call and the onset of the female's response). Duetting is reviewed principally in Orthoptera but also in Plecoptera, Hemiptera, Neuroptera and bioluminescence in the Coleoptera. The mechanisms of the duet are examined first, followed by evolution and the associated change in searching strategies of each sex. As defined, the duet has distinct temporal characteristics and these are compared with acoustic interactions among males in those species that exhibit male–male synchrony and alternation. For insects, the key element of a duet for species' recognition is low variance in the reply latency of females. In cases in which the male's initiating signal is extremely short, reply latencies become indicators of species' recognition. However, in those species in which the initiating male call is under selection through female choice, the male call is predictably longer and occasionally more complex. Under these circumstances, reply latencies often increase, creating an opportunity for alternative male tactics. When alternative tactics exist in nature, males may decrease the intensity of their call, insert a trigger pulse that signals to the female the end of its complex call, or males may even add a masking signal that obscures the competing signal.  相似文献   

6.
7.
The mu opioid receptor is a G-protein coupled receptor able to signal through the Gαi/o class of G-protein and β-arrestin pathways, stimulating down-stream effector pathways. Signaling bias occurs when different receptor agonists lead to different signaling outcomes. Traditionally these have been studied using end-point assays. Real-time cellular analysis platforms allow for the analysis of the holistic effects of receptor activation as an integrated output. While this allows for different ligands to be compared rapidly, the cellular mechanisms underlying the signal are not well described. Using an impedance based system, the impedance responses for two opioid ligands, morphine and DAMGO were examined.The impedance responses for these two agonists, while showing similar features, were distinct from each other. Some of the mechanisms underlying the mu opioid receptor coupled impedance changes were investigated. It was found that the response is a result of discrete cellular processes, including G-protein signaling and protein kinase phosphorylation.  相似文献   

8.
9.
The underlying mechanisms of polarization sensitivity (PS) have long remained elusive. For rhabdomeric photoreceptors, questions remain over the high levels of PS measured experimentally. In ciliary photoreceptors, and specifically cones, little direct evidence supports any type of mechanism. In order to promote a greater interest in these fundamental aspects of polarization vision, we examined a varied collection of studies linking membrane biochemistry, protein-protein interactions, molecular ordering and membrane phase behaviour. While initially these studies may seem unrelated to polarization vision, a common narrative emerges. A surprising amount of evidence exists demonstrating the importance of protein-protein interactions in both rhabdomeric and ciliary photoreceptors, indicating the possible long-range ordering of the opsin protein for increased PS. Moreover, we extend this direction by considering how such protein paracrystalline organization arises in all cell types from controlled membrane phase behaviour and propose a universal pathway for PS to occur in both rhabdomeric and cone photoreceptors.  相似文献   

10.
The central role of glutamate receptors in mediating excitotoxic neuronal death in stroke, epilepsy and trauma has been well established. Glutamate is the major excitatory amino acid transmitter within the CNS and it's signaling is mediated by a number of postsynaptic ionotropic and metabotropic receptors. Although calcium ions are considered key regulators of excitotoxicity, new evidence suggests that specific second messenger pathways rather than total Ca(2+) load, are responsible for mediating neuronal degeneration. Glutamate receptors are found localized at the synapse within electron dense structures known as the postsynaptic density (PSD). Localization at the PSD is mediated by binding of glutamate receptors to submembrane proteins such as actin and PDZ containing proteins. PDZ domains are conserved motifs that mediate protein-protein interactions and self-association. In addition to glutamate receptors PDZ-containing proteins bind a multitude of intracellular signal molecules including nitric oxide synthase. In this way PDZ proteins provide a mechanism for clustering glutamate receptors at the synapse together with their corresponding signal transduction proteins. PSD organization may thus facilitate the individual neurotoxic signal mechanisms downstream of receptors during glutamate overactivity. Evidence exists showing that inhibiting signals downstream of glutamate receptors, such as nitric oxide and PARP-1 can reduce excitotoxic insult. Furthermore we have shown that uncoupling the interaction between specific glutamate receptors from their PDZ proteins protects neurons against glutamate-mediated excitotoxicity. These findings have significant implications for the treatment of neurodegenerative diseases using therapeutics that specifically target intracellular protein-protein interactions.  相似文献   

11.
During the induction of plasticity of dendritic spines, many intracellular signaling pathways are spatially and temporally regulated to co-ordinate downstream cellular processes in different dendritic micron-domains. Recent advent of imaging technology based on fluorescence resonance energy transfer (FRET) has allowed the direct monitoring of the spatiotemporal regulation of signaling activity in spines and dendrites during synaptic plasticity. In particular, the activity of three small GTPase proteins HRas, Cdc42, and RhoA, which share similar structure and mobility on the plasma membrane, displayed different spatial spreading patterns: Cdc42 is compartmentalized in the stimulated spines while RhoA and HRas spread into dendrites over 5-10 μm. These measurements thus provide the basis for understanding the mechanisms underlying the spatiotemporal regulation of signaling activity. Further, using spatiotemporally controlled spine stimulations, some of the roles of signal spreading have been revealed.  相似文献   

12.
The review considers the published data, as well as its own, which demonstrate the abundance and evolutionary conservation of the mechanism of diapause in invertebrates. The ecological reasons for the emergence of diapause in life cycles of hydrobionts are analyzed. The specific physiological features of invertebrate diapausing organisms and the hormonal control of diapause are briefed. The molecular genetic mechanism of diapause is demonstrated by the example of a model species, Caenorhabditis elegans. Recent fundamental discoveries in molecular genetics related to the joint effect of genes and environmental factors on the basic metabolism, choice between the development-diapause alternative, and many other seasonal adaptations in multicellular organisms are discussed. The near discovery of the functional role of daf genes in hydrobionts is postulated. These studies will lead to a deeper understanding of the fine mechanism that underlies photoperiodism and the wider application of diapause phenomenon in theory and practice.  相似文献   

13.
14.
Cis-regulatory sequences, such as enhancers and promoters, control development and physiology by regulating gene expression. Mutations that affect the function of these sequences contribute to phenotypic diversity within and between species. With many case studies implicating divergent cis-regulatory activity in phenotypic evolution, researchers have recently begun to elucidate the genetic and molecular mechanisms that are responsible for cis-regulatory divergence. Approaches include detailed functional analysis of individual cis-regulatory elements and comparing mechanisms of gene regulation among species using the latest genomic tools. Despite the limited number of mechanistic studies published to date, this work shows how cis-regulatory activity can diverge and how studies of cis-regulatory divergence can address long-standing questions about the genetic mechanisms of phenotypic evolution.  相似文献   

15.
Most human cells utilize glucose as the primary substrate, cellular uptake requiring insulin. Insulin signaling is therefore critical for these tissues. However, decrease in insulin sensitivity due to the disruption of various molecular pathways causes insulin resistance (IR). IR underpins many metabolic disorders such as type 2 diabetes and metabolic syndrome, impairments in insulin signaling disrupting entry of glucose into the adipocytes, and skeletal muscle cells. Although the exact underlying cause of IR has not been fully elucidated, a number of major mechanisms, including oxidative stress, inflammation, insulin receptor mutations, endoplasmic reticulum stress, and mitochondrial dysfunction have been suggested. In this review, we consider the role these cellular mechanisms play in the development of IR.  相似文献   

16.
多巴胺转运体(Dopamine transporter,DAT)位于多巴胺能神经元表面,主要负责将细胞外的多巴胺重摄取至多巴胺能神经元内,控制细胞外多巴胺的浓度,进而影响多巴胺的信号强度和时长。多巴胺转运体与注意力缺陷多动症、抑郁、成瘾等中枢神经系统的功能异常相关。多巴胺转运体的重摄取功能受多种因素的调节,包括底物的浓度、自身位点的翻译后修饰、细胞内蛋白激酶的活性、细胞外的调节信号等。本文就近年来DAT的分子调节机制以及在脑疾病发病机制中作用的研究进展做一综述。  相似文献   

17.
肿瘤转移是一个多阶段的恶性进展过程,涉及肿瘤细胞从原发部位逃逸,侵入脉管系统并在其中存活,随循环系统到达远处靶器官并穿出脉管系统播散定植,最终克隆性生长形成转移瘤。转移过程的每一阶段与肿瘤细胞本身遗传和表观遗传改变以及微环境中诸多因素的综合调控密切相关。本综述概要介绍了恶性肿瘤转移多步骤过程中所涉的分子调控机制以及肿瘤转移靶向干预新措施等方面的研究进展;同时,就未来肿瘤转移研究相关的新技术和新方向作一简单的展望。  相似文献   

18.
ABSTRACT

Recombinant DNA technology, in which artificially “cut and pasted” DNA in vitro is introduced into living cells, contributed extensively to the rapid development of molecular biology over the past 5 decades since the latter half of the 20th century. Although the original technology required special experiences and skills, the development of polymerase chain reaction (PCR) has greatly eased in vitro genetic manipulation for various experimental methods. The current development of a simple genome-editing technique using CRISPR-Cas9 gave great impetus to molecular biology. Genome editing is a major technique for elucidating the functions of many unknown genes. Genetic manipulation technologies rely on enzymes that act on DNA. It involves artificially synthesizing, cleaving, and ligating DNA strands by making good use of DNA-related enzymes present in organisms to maintain their life activities. In this review, I focus on key enzymes involved in the development of genetic manipulation technologies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号