首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
3.
4.
Rudolph CJ  Upton AL  Lloyd RG 《DNA Repair》2008,7(9):1589-1602
In dividing cells, the stalling of replication fork complexes by impediments to DNA unwinding or by template imperfections that block synthesis by the polymerase subunits is a serious threat to genomic integrity and cell viability. What happens to stalled forks depends on the nature of the offending obstacle. In UV-irradiated Escherichia coli cells DNA synthesis is delayed for a considerable period, during which forks undergo extensive processing before replication can resume. Thus, restart depends on factors needed to load the replicative helicase, indicating that the replisome may have dissociated. It also requires the RecFOR proteins, which are known to load RecA recombinase on single-stranded DNA, implying that template strands are exposed. To gain a further understanding of how UV irradiation affects replication and how replication resumes after a block, we used fluorescence microscopy and BrdU or radioisotope labelling to examine chromosome replication and cell cycle progression. Our studies confirm that RecFOR promote efficient reactivation of stalled forks and demonstrate that they are also needed for productive replication initiated at the origin, or triggered elsewhere by damage to the DNA. Although delayed, all modes of replication do recover in the absence of these proteins, but nascent DNA strands are degraded more extensively by RecJ exonuclease. However, these strands are also degraded in the presence of RecFOR when restart is blocked by other means, indicating that RecA loading is not sufficient to stabilise and protect the fork. This is consistent with the idea that RecA actively promotes restart. Thus, in contrast to eukaryotic cells, there may be no factor in bacterial cells acting specifically to stabilise stalled forks. Instead, nascent strands may be protected by the simple expedient of promoting restart. We also report that the efficiency of fork reactivation is not affected in polB mutants.  相似文献   

5.
6.
RecQ helicases: guardian angels of the DNA replication fork   总被引:2,自引:0,他引:2  
Bachrati CZ  Hickson ID 《Chromosoma》2008,117(3):219-233
Since the original observations made in James German’s Laboratory that Bloom’s syndrome cells lacking BLM exhibit a decreased rate of both DNA chain elongation and maturation of replication intermediates, a large body of evidence has supported the idea that BLM, and other members of the RecQ helicase family to which BLM belongs, play important roles in DNA replication. More recent evidence indicates roles for RecQ helicases in what can broadly be defined as replication fork ‘repair’ processes when, for example, forks encounter lesions or adducts in the template, or when forks stall due to lack of nucleotide precursors. More specifically, several roles in repair of damaged forks via homologous recombination pathways have been proposed. RecQ helicases are generally only recruited to sites of DNA replication following fork stalling or disruption, and they do so in a checkpoint-dependent manner. There, in addition to repair functions, they aid the stabilisation of stalled replication complexes and seem to contribute to the generation and/or transduction of signals that enforce S-phase checkpoints. RecQ helicases also interact physically and functionally with several key players in DNA replication, including RPA, PCNA, FEN1 and DNA polymerase δ. In this paper, we review the evidence that RecQ helicases contribute to the impressively high level of fidelity with which genome duplication is effected.  相似文献   

7.
Replication forks that collapse upon encountering a leading strand lesion are reactivated by a recombinative repair process called replication restart. Using rolling circle DNA substrates to model replication forks, we examine the fate of the helicase and both DNA polymerases when the leading strand polymerase is blocked. We find that the helicase continues over 0.5 kb but less than 3 kb and that the lagging strand DNA polymerase remains active despite its connection to a stalled leading strand enzyme. Furthermore, the blocked leading strand polymerase remains stably bound to the replication fork, implying that it must be dismantled from DNA in order for replication restart to initiate. Genetic studies have identified at least four gene products required for replication restart, RecF, RecO, RecR, and RecA. We find here that these proteins displace a stalled polymerase at a DNA template lesion. Implications of these results for replication fork collapse and recovery are discussed.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Lambert S  Watson A  Sheedy DM  Martin B  Carr AM 《Cell》2005,121(5):689-702
Genomic rearrangements linked to aberrant recombination are associated with cancer and human genetic diseases. Such recombination has indirectly been linked to replication fork stalling. Using fission yeast, we have developed a genetic system to block replication forks at nonhistone/DNA complexes located at a specific euchromatic site. We demonstrate that stalled replication forks lead to elevated intrachromosomal and ectopic recombination promoting site-specific gross chromosomal rearrangements. We show that recombination is required to promote cell viability when forks are stalled, that recombination proteins associate with sites of fork stalling, and that recombination participates in deleterious site-specific chromosomal rearrangements. Thus, recombination is a "double-edged sword," preventing cell death when the replisome disassembles at the expense of genetic stability.  相似文献   

18.
19.
In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance of fragmented chromosomes and a decrease in terminus concentration, leading to a dramatic increase in ori/ter ratio and cessation of cell growth. Aerobic viability was restored by reducing the level of reactive oxygen species (ROS) or by deleting mutM (Fpg glycosylase). The double-strand breaks observed in hyperinitiating cells therefore results from replication forks encountering single-stranded DNA lesions generated while removing oxidized bases, primarily 8-oxoG, from the DNA. We conclude that there is a delicate balance between chromosome replication and ROS inflicted DNA damage so the number of replication forks can only increase when ROS formation is reduced or when the pertinent repair is compromised.  相似文献   

20.
The eukaryotic cell replicates its chromosomal DNA with almost absolute fidelity in the course of every cell cycle. This accomplishment is remarkable considering that the conditions for DNA replication are rarely ideal. The replication machinery encounters a variety of obstacles on the chromosome, including damaged template DNA. In addition, a number of chromosome regions are considered to be difficult to replicate owing to DNA secondary structures and DNA binding proteins required for various transactions on the chromosome. Under these conditions, replication forks stall or break, posing grave threats to genomic integrity. How does the cell combat such stressful conditions during DNA replication? The replication fork protection complex (FPC) may help answer this question. Recent studies have demonstrated that the FPC is required for the smooth passage of replication forks at difficult-to-replicate genomic regions and plays a critical role in coordinating multiple genome maintenance processes at the replication fork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号