首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the presence of antifreeze and ice nucleating agents in the hemolymph of insects has been well documented, there have been no reports of either of these types of agent in vertebrates. The technique of differential scanning calorimetry was used to examine the blood, serum, and plasma of a freeze-tolerant frog, Rana sylvatica, for the presence of antifreeze protein activity. Results demonstrate the absence of antifreeze protein but the presence of an ice nucleating agent that may serve as a functional component of the overwintering strategy of this species. Ice nucleating activity was detected in samples of cell-free blood, serum, and plasma, suggesting that the agent is a soluble component and possibly plasma protein. To our knowledge, the identification of ice nucleating activity in this freeze-tolerant vertebrate is novel.  相似文献   

2.
Wowk B  Fahy GM 《Cryobiology》2002,44(1):14-23
The simple linear polymer polyglycerol (PGL) was found to apparently bind and inhibit the ice nucleating activity of proteins from the ice nucleating bacterium Pseudomonas syringae. PGL of molecular mass 750 Da was added to a solution consisting of 1 ppm freeze-dried P. syringae 31A in water. Differential ice nucleator spectra were determined by measuring the distribution of freezing temperatures in a population of 98 drops of 1 microL volume. The mean freezing temperature was lowered from -6.8 degrees C (control) to -8.0,-9.4,-12.5, and -13.4 degrees C for 0.001, 0.01, 0.1, and 1% w/w PGL concentrations, respectively (SE < 0.2 degrees C). PGL was found to be an ineffective inhibitor of seven defined organic ice nucleating agents, whereas the general ice nucleation inhibitor polyvinyl alcohol (PVA) was found to be effective against five of the seven. The activity of PGL therefore seems to be specific against bacterial ice nucleating protein. PGL alone was an ineffective inhibitor of ice nucleation in small volumes of environmental or laboratory water samples, suggesting that the numerical majority of ice nucleating contaminants in nature may be of nonbacterial origin. However, PGL was more effective than PVA at suppressing initial ice nucleation events in large volumes, suggesting a ubiquitous sparse background of bacterial ice nucleating proteins with high nucleation efficiency. The combination of PGL and PVA was particularly effective for reducing ice formation in solutions used for cryopreservation by vitrification.  相似文献   

3.
The land snail Helix aspersa can be considered partially tolerant to freezing, in the sense it can survive some ice formation within its body for a limited time, and possesses a limited ability to supercool. This study aimed at understanding what factors are responsible for the variation of the temperature of crystallization ( Tc) in a littoral temperate population. The ability to supercool was maximal (ca. -5 degrees C) during dormancy periods (hibernation and aestivation) and minimal (ca. -3 degrees C) during spring and autumn, in relation with the decrease of water mass and the increase of osmolality. Tc decreased in October to remain stable through late autumn and winter; it increased quickly with the awakening of animals in April. Snails with an epiphragm had a significantly higher ability to supercool (ca. -4.8 degrees C) than snails which did not form an epiphragm (ca. -4.2 degrees C). The animals' size had a weak but significant influence on the realization of the Tc. It appeared that there was not a real cold-hardiness strategy in this population; rather a sum of parameters, varying in consequences of the external conditions and of the activity cycle, which are responsible for the enhancement of the supercooling ability during winter.  相似文献   

4.
A Ansart  P Vernon  J Daguzan 《Cryobiology》2001,42(4):266-273
Helix aspersa hibernates in Brittany (western France), where it may experience subzero temperatures. Studies on cold hardiness, although scarce in land snails, have shown a seasonal variation in supercooling ability, associated with high temperatures of crystallization (Tc). In the present work, two key environmental factors, temperature and photoperiod, were studied to elucidate, how they may affect the enhancement of supercooling ability in the snails from the end of summer to winter. Nine groups of adult snails were acclimated to different combinations of photoperiod (LD-16:8, LD-12:12, and LD-8:16 h) and temperature (15, 10, and 5 degrees C). Temperature of crystallization, hemolymph osmolality, and water content were measured. The results demonstrate a significant effect of the photoperiod on Tc, i.e., shorter photoperiods induce lower Tc (LD-16:8 h, mean Tc = -3.0 degrees C, SD = 2.0; LD-12:12 h, mean Tc = -4.3 degrees C, SD = 1.9; LD-8:16 h, mean Tc = -5.2 degrees C, SD = 1.9; n = 90), whereas the acclimation temperature had no effect. Measurements of hemolymph osmolality and water content showed that osmolality is negatively correlated with water content. Mechanisms such as dehydration are involved in the decrease of Tc. A declining photoperiod triggers a lower Tc, long before the onset of winter conditions. This response may have an adaptive component, allowing individuals to cope with the mild winters typically observed in oceanic regions.  相似文献   

5.
The temperature at which ice formation occurs in supercooled cytoplasm is an important element in predicting the likelihood of intracellular freezing of cells cooled by various procedures to subzero temperatures. We have confirmed and extended prior indications that permeating cryoprotective additives decrease the ice nucleation temperature of cells, and have determined some possible mechanisms for the decrease. Our experiments were carried out on eight-cell mouse embryos equilibrated with various concentrations (0-2.0 M) of dimethyl sulfoxide or glycerol and then cooled rapidly. Two methods were used to assess the nucleation temperature. The first, indirect, method was to determine the in vitro survival of the rapidly cooled embryos as a function of temperature. The temperatures over which an abrupt drop in survival occurs are generally diagnostic of the temperature range for intracellular freezing. The second, direct, method was to observe the microscopic appearance during rapid cooling and note the temperature at which nucleation occurred. Both methods showed that the nucleation temperature decreased from - 10 to - 15 degrees C in saline alone to between - 38 degrees and - 44 degrees C in 1.0-2.0 M glycerol and dimethyl sulfoxide. The latter two temperatures are close to the homogeneous nucleation temperatures of the solutions in the embryo cytoplasm, and suggest that embryos equilibrated in these solutions do not contain heterogeneous nucleating agents and are not accessible to any extracellular nucleating agents, such as extracellular ice. The much higher freezing temperatures of cells in saline or in low concentrations of additive indicate that they are being nucleated by heterogeneous agents or, more likely, by extracellular ice.  相似文献   

6.
Calorimetric analysis indicates that 82% of the body water of Hemideina maori is converted into ice at 10 degrees C. This is a high proportion and led us to investigate whether intracellular freezing occurs in H. maori tissue. Malpighian tubules and fat bodies were frozen in haemolymph on a microscope cold stage. No fat body cells, and 2% of Malpighian tubule cells froze during cooling to -8 degrees C. Unfrozen cells appeared shrunken after ice formed in the extracellular medium. There was no difference between the survival of control tissues and those frozen to -8 degrees C. At temperatures below -15 degrees C (lethal temperatures for weta), there was a decline in survival, which was strongly correlated with temperature, but no change in the appearance of tissue. It is concluded that intracellular freezing is avoided by Hemideina maori through osmotic dehydration and freeze concentration effects, but the reasons for low temperature mortality remain unclear. The freezing process in H. maori appears to rely on extracellular ice nucleation, possibly with the aid of an ice nucleating protein, to osmotically dehydrate the cells and avoid intracellular freezing. The lower lethal temperature of H. maori (-10 degrees C) is high compared to organisms that survive intracellular freezing. This suggests that the category of 'freezing tolerance' is an oversimplification, and that it may encompass at least two strategies: intracellular freezing tolerance and avoidance.  相似文献   

7.
Correlation between the flexibility of the Met80 loop (residues 75-86) and the local stabilities of native ferricytochromes c from horse, bovine, and tuna was examined. By monitoring the heme bands versus temperature, absorption changes associated with altered ligation in the alkaline isomers were observed. In addition, the intensity of the 695-nm absorption band, which is associated with the heme-crevice stability, decreased with increasing temperature and exhibited biphasic temperature dependence, with transition temperatures (Tc) at 35 degrees C in tuna c, 55 degrees C in horse c, and 58 C in bovine c. Since the heme crevice plays a key role in the thermal stabilities of cytochromes c, their susceptibility to proteolytic attack was examined as a function of temperature. Proteolytic digestion, which requires local conformational instability, revealed that the local stabilities of the cytochromes follow the order: bovine > horse > tuna, and increased digestion occurred at temperatures close to the 695-nm Tc for each protein. This is consistent with the actual substitution of the Met80 ligand above the 695-nm Tc, which is reflected in the thermodynamic parameters for the two phases. Also, tuna c, unlike horse and bovine c, exhibits different 695-nm (35 degrees C) and Soret (approximately 46 degrees C) Tc values, but its local stability is controlled by the transition detected at 695 nm. The combined spectroscopic and proteolysis results clearly indicate that the flexibility of the Met80 loop determines the local stability of cytochromes c.  相似文献   

8.
The alpine cockroach Celatoblatta quinquemaculata is common at altitudes of around 1500 m on the Rock and Pillar range of Central Otago, New Zealand where it experiences freezing conditions in the winter. The cockroach is freeze tolerant, but only to c. -9 degrees C. The cause of death at temperatures below this is unknown but likely to be due to osmotic damage to cells (shrinkage). This study compared the effect of different ice nucleation temperatures (-2 and -4 degrees C) on the viability of three types of cockroach tissue (midgut, Malpighian tubules and fat body cells) and cooling to three different temperatures (-5, -8, -12 degrees C). Two types of observations were made (i) cryomicroscope observations of ice formation and cell shrinkage (ii) cell integrity (viability) using vital stains. Cell viability decreased with lower treatment temperatures but ice nucleation temperature had no significant effect. Cryomicroscope observations showed that ice spread through tissue faster at -4 than -2 degrees C and that intracellular freezing only occurred when nucleated at -4 degrees C. From temperature records during cooling, it was observed that when freezing occurred, latent heat immediately increased the insect's body temperature close to its melting point (c. -0.3 degrees C). This "rebound" temperature was independent of nucleation temperature. Some tissues were more vulnerable to damage than others. As the gut is thought to be the site of freezing, it is significant that this tissue was the most robust. The ecological importance of the effect of nucleation temperature on survival of whole animals under field conditions is discussed.  相似文献   

9.
Summary Hemolymph ice nucleating factors are found in many freeze tolerant insects. These factors function to initiate ice nucleation in the extracellular fluid at fairly high subzero temperatures thereby minimizing the possibility of lethal intracellular ice formation.An ice nucleating protein was purified from the hymolymph of pupal bald faced hornets,Vespula maculata. This is the first ice nucleating protein to be purified. The protein has a molecular weight of 74,000, as determined by SDS-PAGE, and is quite hydrophilic. Glutamate and/or glutamine accounts for 20% of the amino acid residues. It is likely that the hydrophilic nature of the protein is involved in the ability of the protein to function as an ice nucleator.  相似文献   

10.
Polyamines have been shown to be necessary for the activity of the extracellular ice–nucleating matter (EIM) from the ice–nucleating bacterium, Erwinia uredovora KUIN-3. When this bacterium was cultured in the presence of methylglyoxal bis(guanylhydrazone), MGBG (2 mM), the ice–nucleating activity of the EIM significantly decreased. Further, the thermal (25–40°C) and pH (alkaline region) stabilities of the activity were stimulated by the addition of spermidine. This phenomenon only occurred in the class A and B structures, and it showed that the hydrophobicities of the class A and B structures in the EIM increased with the addition of spermidine as judged by the freezing difference spectra. We then found by using fluorescent reagents that the physiological roles of spermidine in the EIM controlled the charge, free-amino groups, and hydrophobicities on the surface of the EIM. In conclusion, one could predict that spermidine took part in the charge of the surface, the control of hydrophobicity, and the stability of protein conformation in the class A and B structures in the EIM, and is a critical component in the class A and B nucleating structures.  相似文献   

11.
The present study sought to quantitate the levels of plasma catecholamines [norepinephrine (NE), epinephrine (E), and dopamine (DA)] during induction and rewarming from hypothermia. Male rats (317 +/- 8 g) were made hypothermic by exposure to 0.9% halothane at -10 to -15 degrees C while blood pressure (carotid artery), heart rate, and colonic temperature (Tc) were monitored. Anesthesia was discontinued when Tc reached 28 degrees C. Tc continued to fall but was held at 20-20.5 degrees C for 30 min. Rewarming was then initiated by raising ambient temperature to 22 degrees C. Arterial blood samples were taken 1) before cooling, 2) just before rewarming, 3) when Tc reached 22 degrees C during rewarming, and 4) when Tc reached 27 degrees C during rewarming. Plasma was assayed radioenzymatically for catecholamines using both phenylethanolamine-N-methyltransferase and catechol-O-methyltransferase procedures, and hypothermic induction resulted in significant increases in NE, E, and DA above control levels (P less than 0.01). With rewarming to Tc = 22 degrees C, all catecholamines increased above the level observed during hypothermia (P less than 0.01), and NE and DA increased still further (P less than 0.01) when Tc reached 27 degrees C. The levels of plasma catecholamines observed during hypothermia and during the rewarming phase indicate a role of the sympathoadrenal medullary system in the metabolic adjustments associated with hypothermia and recovery. During rewarming, the levels of E and NE attained exceed those at which both substances may be expected to act as circulating hormones.  相似文献   

12.
Fourier transform infrared spectroscopy (FTIR) and cryomicroscopy were used to define the process of cellular injury during freezing in LNCaP prostate tumor cells, at the molecular level. Cell pellets were monitored during cooling at 2 degrees C/min while the ice nucleation temperature was varied between -3 and -10 degrees C. We show that the cells tend to dehydrate precipitously after nucleation unless intracellular ice formation occurs. The predicted incidence of intracellular ice formation rapidly increases at ice nucleation temperatures below -4 degrees C and cell survival exhibits an optimum at a nucleation temperature of -6 degrees C. The ice nucleation temperature was found to have a great effect on the membrane phase behavior of the cells. The onset of the liquid crystalline to gel phase transition coincided with the ice nucleation temperature. In addition, nucleation at -3 degrees C resulted in a much more co-operative phase transition and a concomitantly lower residual conformational disorder of the membranes in the frozen state compared to samples that nucleated at -10 degrees C. These observations were explained by the effect of the nucleation temperature on the extent of cellular dehydration and intracellular ice formation. Amide-III band analysis revealed that proteins are relatively stable during freezing and that heat-induced protein denaturation coincides with an abrupt decrease in alpha-helical structures and a concomitant increase in beta-sheet structures starting at an onset temperature of approximately 48 degrees C.  相似文献   

13.
Pulmonary alveolar type II cells synthesize, secrete, and recycle the components of pulmonary surfactant. In this report we present evidence that dipalmitoylphosphatidylcholine is a potent inhibitor of surfactant lipid secretion by type II cells. Monoenoic and dienoic phosphatidylcholines with fatty acids of 16 or 18 carbons are ineffective as inhibitors of surfactant lipid secretion. In contrast, disaturated phosphatidylcholines, with either symmetric or asymmetric pairs of fatty acids of 14, 16, or 18 carbons, exhibit inhibition of surfactant secretion that correlates extremely well with the phase transition temperature (Tc) of the phospholipid. The inhibitory activity of dipalmitoylphosphatidylcholine is not dependent upon lipid stereochemistry. N-Methylated derivatives of dipalmitoylphosphatidylethanolamine are significantly less effective than phosphatidylcholine as inhibitors. Phosphatidylcholines below their phase transition temperature are inhibitors of surfactant secretion, whereas those above their phase transition temperature are either ineffective or weakly inhibitory. The phase transition dependence of inhibition is observed when type II cells are incubated at 37 degrees C with different species of phosphatidylcholine. In addition, if type II cells are stimulated to secrete at different temperatures the efficacy of a given phospholipid as an inhibitor is dependent on its relationship to Tc (i.e. dipalmitoylphosphatidylcholine with a Tc of 41 degrees C significantly inhibits secretion at 37 degrees C but not at 42 degrees C). Inhibition of surfactant secretion by dipalmitoylphosphatidylcholine is abrogated when it is incorporated into the same liposome with dioleoylphosphatidylcholine as a 50:50 mixture. In contrast, the simultaneous addition of two separate populations of liposomes, one composed of dipalmitoylphosphatidylcholine and the other composed of dioleoylphosphatidylcholine, does not significantly alter the inhibitory activity found with dipalmitoylphosphatidylcholine alone. These data provide compelling evidence that the physical state of phosphatidylcholine can regulate surfactant secretion from alveolar type II cells and suggest a unique mechanism for regulating exocytosis in the alveolus of the lung.  相似文献   

14.
Helix aspersa hibernates in Brittany (western France), where it may experience subzero temperatures. Studies on cold hardiness, although scarce in land snails, have shown a seasonal variation in supercooling ability, associated with high temperatures of crystallization (Tc). In the present work, two key environmental factors, temperature and photoperiod, were studied to elucidate, how they may affect the enhancement of supercooling ability in the snails from the end of summer to winter. Nine groups of adult snails were acclimated to different combinations of photoperiod (LD-16:8, LD-12:12, and LD-8:16 h) and temperature (15, 10, and 5°C). Temperature of crystallization, hemolymph osmolality, and water content were measured. The results demonstrate a significant effect of the photoperiod on Tc, i.e., shorter photoperiods induce lower Tc (LD-16:8 h, mean Tc = −3.0°C, SD = 2.0; LD-12:12 h, mean Tc = −4.3°C, SD = 1.9; LD-8:16 h, mean Tc = −5.2°C, SD = 1.9; n = 90), whereas the acclimation temperature had no effect. Measurements of hemolymph osmolality and water content showed that osmolality is negatively correlated with water content. Mechanisms such as dehydration are involved in the decrease of Tc. A declining photoperiod triggers a lower Tc, long before the onset of winter conditions. This response may have an adaptive component, allowing individuals to cope with the mild winters typically observed in oceanic regions.  相似文献   

15.
A by-product of rice bran oil and protein production was treated with water and compressed hot water at 20 degrees C to 260 degrees C for 5 min, and at 200 degrees C and 260 degrees C for 5 to 120 min. Each extract was evaluated for its yield, radical scavenging activity, carbohydrate, protein, total phenolic and furfural contents, molecular-mass distribution and antioxidative activity. The maximum yield was obtained at 200 degrees C. The radical scavenging activity and the protein, total phenolic and furfural contents of the extract increased with increasing temperature. However, the carbohydrate content abruptly decreased when treated at above 200 degrees C. The extract treated at 260 degrees C for 5 min exhibited suppressive activity toward the autoxidation of linoleic acid. Each extract obtained at temperatures lower than or equal to 200 degrees C exhibited emulsifying ability.  相似文献   

16.
During exponential growth at temperatures of 30 to 39 degrees C, the specific activity of H(+)-ATPase in the plasma membrane of Saccharomyces cerevisiae (assayed at the standard temperature 30 degrees C) increased with increases in growth temperature. In addition, the optimal temperature for in vitro activity of this ATPase was 42 degrees C. Therefore, the maximum values of ATPase activity were expected to occur in cells that grew within the supraoptimal range of temperatures. Activation induced by supraoptimal temperatures was not the result of increased synthesis of this membrane enzyme. When the growth temperature increased from 30 to 40 degrees C, expression of the essential PMA1 gene, monitored either by the level of PMA1 mRNA or the beta-galactosidase activity of the lacZ-PMA1 fusion, was reduced. Consistently, quantitative immunoassays showed that the ATPase content in the plasma membrane decreased. Like ATPase activity, the efficiency of the PMA2 promoter increased with increases in growth temperature in cells that had been grown at 30 to 39 degrees C, but its level of expression was several hundred-fold lower than that of PMA1. These results suggest that the major PMA1 ATPase is activated at supraoptimal temperatures.  相似文献   

17.
Differential scanning calorimetry, fluorescence spectroscopy and freeze-fracture electron microscopy have been applied to a study of the reconstituted Ca2+-ATPase proteins from sarcoplasmic reticulum when they are incorporated into pure lipid/water systems. The results obtained with these techniques have been used to examine the effects of this intrinsic protein upon the surrounding lipid at temperatures above and below the main lipid solid-fluid phase transition temperature (Tc). 1. Above this Tc value, the freeze-fracture data show that the proteins are randomly distributed within the plane of the bilayer. The fluorescence data show that as the protein content in the bilayer increases, so does the 'microviscosity'. 2. Below Tc the proteins occur in high protein to lipid patches, separate from the remaining crystalline lipid. The fluorescence data indicate that at these temperatures the presence of the protein causes a decrease in microviscosity, whilst the calorimetric data indicate a decrease in enthalpy of the main lipid transition. 3. A premelting of the high protein to lipid patches formed by phase separation within the lipid bilayers is indicated by the calorimetric and fluorescence data. This observation is used to rationalise the 'anomalous' properties of the dipalmitoyl phosphatidylcholine-ATPase of exhibiting activity at temperatures well below the lipid phase transition at 41 degrees C.  相似文献   

18.
Holden CP  Storey KB 《Cryobiology》2000,40(4):323-331
Freeze tolerance by various amphibians includes cryoprotectant production in the form of glucose. Activation of the catalytic subunit of liver cAMP-dependent protein kinase (PKAc) facilitates activation of glycogenolysis, a critical biochemical process necessary for production of glucose. Here, we purified PKAc from Rana sylvatica liver to determine the extent to which cold temperature, which stimulates cryoprotectant production, affected PKAc activity and function. PKAc was purified to greater than 95% homogeneity, with a final specific activity of 71 nmol phosphate transferred/min/mg protein. The molecular weight of frog liver PKAc was 47.6 +/- 1.1 kDa and K(m) values for the phosphate acceptor kemptide and Mg-ATP were 9.0 +/- 0.1 and 51.8 +/- 1.0 microM at 22 degrees C, respectively. K(m) values for both substrates dropped significantly at 5 degrees C. The enzyme was sensitive to specific inhibitors of mammalian PKAc (PKA(i), H89) but was only moderately inhibited by high salt concentrations. Furthermore, salt inhibition was reduced at low temperature. The effect of temperature on enzyme activity indicated a conformational change in PKAc at 10 +/- 2 degrees C, with calculated activation energies of 51 +/- 4 kJ/mol at temperatures above 10 degrees C and 110 +/- 9 kJ/mol below 10 degrees C. PKAc in wood frog liver plays a crucial role in mediating the freeze-induced glycogenolysis that is responsible for the production of 200-300 mM levels of glucose as a cryoprotectant. Differential effects of low temperature on enzyme function, increased substrate affinity and reduced ion inhibition, appear to be central to this role.  相似文献   

19.
The heterogeneous ice nucleation characteristics and frost injury in supercooled leaves upon ice formation were studied in nonhardened and cold-hardened species and crosses of tuber-bearing Solanum. The ice nucleation activity of the leaves was low at temperatures just below 0°C and further decreased as a result of cold acclimation. In the absence of supercooling, the nonhardened and cold-hardened leaves tolerated extracellular freezing between −3.5° and −8.5°C. However, if ice initiation in the supercooled leaves occurred at any temperature below −2.6°C, the leaves were lethally injured.

To prevent supercooling in these leaves, various nucleants were tested for their ice nucleating ability. One% aqueous suspensions of fluorophlogopite and acetoacetanilide were found to be effective in ice nucleation of the Solanum leaves above −1°C. They had threshold temperatures of −0.7° and −0.8°C, respectively, for freezing in distilled H2O. Although freezing could be initiated in the Solanum leaves above −1°C with both the nucleants, 1% aqueous fluorophlogopite suspension showed overall higher ice nucleation activity than acetoacetanilide and was nontoxic to the leaves. The cold-hardened leaves survived between −2.5° and −6.5° using 1% aqueous fluorophlogopite suspension as a nucleant. The killing temperatures in the cold-hardened leaves were similar to those determined using ice as a nucleant. However, in the nonhardened leaves, use of fluorophlogopite as a nucleant resulted in lethal injury at higher temperatures than those estimated using ice as a nucleant.

  相似文献   

20.
Meaningful improvements in winter cereal cold hardiness requires a complete model of freezing behaviour in the critical crown organ. Magnetic resonance microimaging diffusion‐weighted experiments provided evidence that cold acclimation decreased water content and mobility in the vascular transition zone (VTZ) and the intermediate zone in rye (Secale cereale L. Hazlet) compared with wheat (Triticum aestivum L. Norstar). Differential thermal analysis, ice nucleation, and localization studies identified three distinct exothermic events. A high‐temperature exotherm (?3°C to ?5°C) corresponded with ice formation and high ice‐nucleating activity in the leaf sheath encapsulating the crown. A midtemperature exotherm (?6°C and ?8°C) corresponded with cavity ice formation in the VTZ but an absence of ice in the shoot apical meristem (SAM). A low‐temperature exotherm corresponded with SAM injury and the killing temperature in wheat (?21°C) and rye (?27°C). The SAM had lower ice‐nucleating activity and freezing survival compared with the VTZ when frozen in vitro. The intermediate zone was hypothesized to act as a barrier to ice growth into the SAM. Higher cold hardiness of rye compared with wheat was associated with higher VTZ and intermediate zone desiccation resulting in the formation of ice barriers surrounding the SAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号