首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Ras vs Rap     
  相似文献   

2.
CalDAG-GEFIII activation of Ras, R-ras, and Rap1   总被引:10,自引:0,他引:10  
We characterized a novel guanine nucleotide exchange factor (GEF) for Ras family G proteins that is highly homologous to CalDAG-GEFI, a GEF for Rap1 and R-Ras, and to RasGRP/CalDAG-GEFII, a GEF for Ras and R-Ras. This novel GEF, referred to as CalDAG-GEFIII, increased the GTP/GDP ratio of Ha-Ras, R-Ras, and Rap1 in 293T cells. CalDAG-GEFIII promoted the guanine nucleotide exchange of Ha-Ras, R-Ras, and Rap1 in vitro also, indicating that CalDAG-GEFIII exhibited the widest substrate specificity among the known GEFs for Ras family G proteins. Expression of CalDAG-GEFIII was detected in the glial cells of the brain and the glomerular mesangial cells of the kidney by in situ hybridization. CalDAG-GEFIII activated ERK/MAPK most efficiently, followed by CalDAG-GEFII and CalDAG-GEFI in 293T cells. JNK activation was most prominent in cells expressing CalDAG-GEFII, followed by CalDAG-GEFIII and CalDAG-GEFI. Expression of CalDAG-GEFIII induced neuronal differentiation of PC12 cells and anchorage-independent growth of Rat1A cells less efficiently than did CalDAG-GEFII. Thus, co-activation of Rap1 by CalDAG-GEFIII apparently attenuated Ras-MAPK-dependent neuronal differentiation and cellular transformation. Altogether, CalDAG-GEFIII activated a broad range of Ras family G proteins and exhibited a biological activity different from that of either CalDAG-GEFI or CalDAG-GEFII.  相似文献   

3.
Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors.  相似文献   

4.
We describe a role for diacylglycerol in the activation of Ras and Rap1 at the phagosomal membrane. During phagocytosis, Ras density was similar on the surface and invaginating areas of the membrane, but activation was detectable only in the latter and in sealed phagosomes. Ras activation was associated with the recruitment of RasGRP3, a diacylglycerol-dependent Ras/Rap1 exchange factor. Recruitment to phagosomes of RasGRP3, which contains a C1 domain, parallels and appears to be due to the formation of diacylglycerol. Accordingly, Ras and Rap1 activation was precluded by antagonists of phospholipase C and of diacylglycerol binding. Ras is dispensable for phagocytosis but controls activation of extracellular signal-regulated kinase, which is partially impeded by diacylglycerol inhibitors. By contrast, cross-activation of complement receptors by stimulation of Fcγ receptors requires Rap1 and involves diacylglycerol. We suggest a role for diacylglycerol-dependent exchange factors in the activation of Ras and Rap1, which govern distinct processes induced by Fcγ receptor-mediated phagocytosis to enhance the innate immune response.Receptors that interact with the constant region of IgG (FcγR)4 mediate the recognition and elimination of soluble immune complexes and particles coated (opsonized) with immunoglobulins. Clustering of FcγR on the surface of leukocytes upon attachment to multivalent ligands induces their activation and subsequent internalization. Soluble immune complexes are internalized by endocytosis, a clathrin- and ubiquitylation-dependent process (1). In contrast, large, particulate complexes like IgG-coated pathogens are ingested by phagocytosis, a process that is contingent on extensive actin polymerization that drives the extension of pseudopods (2). In parallel with the internalization of the opsonized targets, cross-linking of phagocytic receptors triggers a variety of other responses that are essential components of the innate immune response. These include degranulation, activation of the respiratory burst, and the synthesis and release of multiple inflammatory agents (3, 4).Like T and B cell receptors, FcγR possesses an immunoreceptor tyrosine-based activation motif that is critical for signal transduction (3, 4). Upon receptor clustering, tyrosyl residues of the immunoreceptor tyrosine-based activation motif are phosphorylated by Src family kinases, thereby generating a docking site for Syk, a tyrosine kinase of the ZAP70 family (3, 4). The recruitment and activation of Syk in turn initiates a cascade of events that include activation of Tec family kinases, Rho- and ARF-family GTPases, phosphatidylinositol 3-kinase, phospholipase Cγ (PLCγ), and a multitude of additional effectors that together remodel the underlying cytoskeleton, culminating in internalization of the bound particle (5, 6).Phosphoinositide metabolism is thought to be critical for FcγR-induced phagocytosis (7, 8). Highly localized and very dynamic phosphoinositide changes have been observed at sites of phagocytosis: phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) undergoes a transient accumulation at the phagocytic cup, which is rapidly superseded by its complete elimination from the nascent phagosome (7). The secondary disappearance of PtdIns(4,5)P2 is attributable in part to the localized generation of phosphatidylinositol 3,4,5-trisphosphate, which has been reported to accumulate at sites of phagocytosis (9). Activation of PLCγ is also believed to contribute to the acute disappearance of PtdIns(4,5)P2 in nascent phagosomes. Indeed, the generation of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate has been detected by chemical means during FcγR-evoked particle ingestion (10, 11). Moreover, imaging experiments revealed that DAG appears at the time and at the precise site where PtdIns(4,5)P2 is consumed (7).Two lines of evidence suggest that the DAG generated upon engagement of phagocytic receptors modulates particle engulfment. First, antagonists of PLC severely impair phagocytosis by macrophages (7, 12). This inhibition is not mimicked by preventing the associated [Ca2+] transient, suggesting that DAG, and not inositol 1,4,5-trisphosphate, is the crucial product of the PLC (13). Second, the addition of exogenous DAG or phorbol esters, which mimic the actions of endogenous DAG, augment phagocytosis (14, 15).Selective recognition of DAG by cellular ligands is generally mediated by specific regions of its target proteins, called C1 domains (16). Proteins bearing C1 domains include, most notably, members of the classical and novel families of protein kinase C (PKC), making them suitable candidates to account for the DAG dependence of phagocytosis. Indeed, PKCα, a classical isoform, and PKCϵ and PKCδ, both novel isoforms, are recruited to phagosomes (12, 15, 17, 18). Although the role of the various PKC isoforms in particle engulfment has been equivocal over the years, Cheeseman et al. (12) convincingly demonstrated that PKCϵ contributes to particle uptake in a PLC- and DAG-dependent manner.PKCs are not the sole proteins bearing DAG-binding C1 domains. Similar domains are also found in several other proteins, including members of the RasGRP family, chimaerins, and Munc-13 (1921). One or more of these could contribute to the complex set of responses elicited by FcγR-induced DAG production. The RasGRP proteins are a class of exchange factors for the Ras/Rap family of GTPases (22). There are four RasGRP proteins (RasGRP1 to -4), and emerging evidence has implicated RasGRP1 and RasGRP3 in T and B cell receptor signaling (2327).The possible role of DAG-mediated signaling pathways other than PKC in phagocytosis and the subsequent inflammatory response has not been explored. Here, we provide evidence that DAG stimulates Ras and Rap1 at sites of phagocytosis, probably through RasGRPs. Last, the functional consequences of Ras and Rap1 activation were analyzed.  相似文献   

5.
GFP-based fluorescence resonance energy transfer (FRET) probes that visualize local activity-changes of Ras and Rho GTPases in living cells are now available for examining the spatio-temporal regulation of these proteins. This article describes principles and strategies to develop intramolecular FRET probes for Ras- and Rho-family GTPases. The procedure for characterizing candidate probes, and image acquisition and processing are also explained. An optimal FRET probe should have (i) a wide dynamic range (which means a high sensitivity), (ii) a high fluorescence intensity, (iii) target specificity, and (iv) a minimal perturbation to endogenous signaling cascades. Although an improvement of FRET probes should be executed in a trial-and-error manner, practical tips for optimization are provided here. In addition, we illustrate some applications of FRET probes for neuronal cells, which are composed of diverse subcellular compartments with different functions; thus, tools to decipher the dynamics of GTPase activity in each compartment have long been desired.  相似文献   

6.
GAP1(IP4BP) is a member of the GAP1 family of Ras GTPase-activating proteins (Ras GAPs) that includes GAP1(m), CAPRI, and RASAL. Composed of a central Ras GAP domain, surrounded by amino-terminal C(2) domains and a carboxyl-terminal pleckstrin homology/Bruton's tyrosine kinase domain, GAP1(IP4BP) has previously been shown to possess an unexpected GAP activity on the Ras-related protein Rap, besides the predicted Ras GAP activity (Cullen, P. J., Hsuan, J. J., Truong, O., Letcher, A. J., Jackson, T. R., Dawson, A. P., and Irvine, R. F. (1995) Nature 376, 527-530). Here we have shown that GAP1(IP4BP) is indeed an efficient Ras/Rap GAP, having K(m)s of 213 and 42 microm and estimated k(cat)s of 48 and 16 s(-1) for Ras and Rap, respectively. For this dual activity, regions outside the Ras GAP domain are required, as the isolated domain (residues 291-569) retains a pronounced Ras GAP activity yet has very low activity toward Rap. Interestingly, mutagenesis of the Ras GAP arginine finger, and surrounding residues important in Ras binding, inhibit both Ras and Rap GAP activity of GAP1(IP4BP). Although the precise details by which GAP1(IP4BP) can function as a Rap GAP remain to be determined, these data are consistent with Rap associating with GAP1(IP4BP) through the Ras-binding site within the Ras GAP domain. Finally, we have established that such dual Ras/Rap GAP activity is not restricted to GAP1(IP4BP). Although GAP1(m) appears to constitute a specific Ras GAP, CAPRI and RASAL display dual activity. For CAPRI, its Rap GAP activity is modulated upon its Ca(2+)-induced association with the plasma membrane.  相似文献   

7.
Abstract

Ras and Rap proteins are closely related small guanosine triphosphatase (GTPases) that share similar effector-binding domains but operate in a very different signaling networks; Ras has a dominant role in cell proliferation, while Rap mediates cell adhesion. Ras and Rap proteins are regulated by several shared processes such as post-translational modification, phosphorylation, activation by guanine exchange factors and inhibition by GTPase-activating proteins. Sub-cellular localization and trafficking of these proteins to and from the plasma membrane are additional important regulatory features that impact small GTPases function. Despite its importance, the trafficking mechanisms of Ras and Rap proteins are not completely understood. Chaperone proteins play a critical role in trafficking of GTPases and will be the focus of the discussion in this work. We will review several aspects of chaperone biology focusing on specificity toward particular members of the small GTPase family. Understanding this specificity should provide key insights into drug development targeting individual small GTPases.  相似文献   

8.
Raf-1 interferes with Ras and Rap1A effector functions in yeast.   总被引:2,自引:0,他引:2       下载免费PDF全文
Raf-1 is a serine/threonine kinase that acts downstream of Ras in mitogenic signal transduction pathways, but the mechanism by which Ras transmits signals to Raf-1 is not known. We have examined the interaction between Raf-1 and human H-ras in three different systems that utilize H-ras-induced phenotypes in Saccharomyces cerevisiae. In each system, the effects of H-ras depend on guanosine triphosphate and appear to be mediated through the H-ras effector binding region. H-ras effector function was blocked in each case by expression of the N-terminal regulatory domain of Raf-1. These inhibitory effects did not require the Raf-1 kinase domain. Raf-1 also blocked Rap1A effector function in S. cerevisiae. Raf-1, therefore, appears to interact with H-Ras and Rap1A in these in vivo systems with properties that suggest it is an immediate downstream effector.  相似文献   

9.
Highlighting the role of Ras and Rap during Dictyostelium chemotaxis   总被引:1,自引:0,他引:1  
Chemotaxis, the directional movement towards a chemical compound, is an essential property of many cells and has been linked to the development and progression of many diseases. Eukaryotic chemotaxis is a complex process involving gradient sensing, cell polarity, remodelling of the cytoskeleton and signal relay. Recent studies in the model organism Dictyostelium discoideum have shown that chemotaxis does not depend on a single molecular mechanism, but rather depends on several interconnecting pathways. Surprisingly, small G-proteins appear to play essential roles in all these pathways. This review will summarize the role of small G-proteins in Dictyostelium, particularly highlighting the function of the Ras subfamily in chemotaxis.  相似文献   

10.
Exchange proteins activated by cAMP (cyclic AMP) 2 (Epac2) is a guanine nucleotide exchange factor for Rap1, a small G protein involved in many cellular functions, including cell adhesion, differentiation, and exocytosis. Epac2 interacts with Ras-GTP via a Ras association (RA) domain. Previous studies have suggested that the RA domain was dispensable for Epac2 function. Here we show for the first time that Ras and cAMP regulate Epac2 function in a parallel fashion and the Ras-Epac2 interaction is required for the cAMP-dependent activation of endogenous Rap1 by Epac2. The mechanism for this requirement is not allosteric activation of Epac2 by Ras but the compartmentalization of Epac2 on the Ras-containing membranes. A computational modeling is consistent with this compartmentalization being a function of both the level of Ras activation and the affinity between Ras and Epac2. In PC12 cells, a well-established model for sympathetic neurons, the Epac2 signaling is coupled to activation of mitogen-activated protein kinases and contributes to neurite outgrowth. Taken together, the evidence shows that Epac2 is not only a cAMP sensor but also a bona fide Ras effector. Coincident detection of both cAMP and Ras signals is essential for Epac2 to activate Rap1 in a temporally and spatially controlled manner.  相似文献   

11.
The Ras-like family of small GTPases includes, among others, Ras, Rap1, R-ras, and Ral. The family is characterized by similarities in the effector domain. While the function of Ras is, at least in part, elucidated, little is known about other members of the family. Currently, much attention is focused on the small GTPase Rap1. Initially, this member was identified as a transformation suppressor protein able to revert the morphological phenotype of Ras-transformed fibroblasts. This has led to the hypothesis that Rap1 antagonizes Ras by interfering in Ras effector function. Recent analysis revealed that Rap1 is activated rapidly in response to activation of a variety of receptors. Rap1 activation is mediated by several second messengers, including calcium, diacylglycerol, and cAMP. Guanine nucleotide exchange factors (GEFs) have been identified that mediate these effects. The most interesting GEF is Epac, an exchange protein directly activated by cAMP, thus representing a novel cAMP-induced, protein kinase A-independent pathway. Furthermore, Rap1 is inactivated by specific GTPase-activating proteins (GAPs), one of which is regulated through an interaction with Galphai. While Ras and Rap1 may share some effector pathways, evidence is accumulating that Ras and Rap1 each regulate unique cellular processes in response to various extracellular ligands. For Rap1 these functions may include the control of cell morphology.  相似文献   

12.
Ras GTPases regulate cellular growth and differentiation and are modulated by myriad stimuli including growth factors, cytokines, antigens, and UV irradiation. Ras GTPases are molecular switches that are active when GTP-bound and inactive when GDP-bound. The ability of these GTPases to signal requires that the GTP-bound form engage downstream effectors, interactions that occur only on the cytosolic surface of cellular membranes. Ras family proteins include H-Ras, N-Ras, K-Ras, and Rap1. Insight into the regulation and signaling properties of these molecules has come largely from in vitro studies relying on cellular extracts prepared following cellular stimulation. Since Ras GTPases are expressed on multiple cellular compartments that include the plasma membrane, vesicles derived from the plasma membrane, and other internal membranes such as the ER and Golgi complex, analysis of how their spatial distribution modulates signaling has remained unknown. We have developed fluorescent, GFP-based probes capable of selectively binding GTP-bound Ras or Rap1 in living cells. We have used these reporters to examine sites of cellular activation of Ras and Rap1 during growth factor stimulation. These studies have revealed new insights into the platforms from which these GTPases signal and have led to the hypothesis that GTPase signaling is modulated in a compartmentalized fashion. Here, we describe the design and implementation of fluorescent probes for Ras and Rap1.  相似文献   

13.
14.
The Src tyrosine kinase is necessary for activation of extracellular signal-regulated kinases (ERKs) by the beta-adrenergic receptor agonist, isoproterenol. In this study, we examined the role of Src in the stimulation of two small G proteins, Ras and Rap1, that have been implicated in isoproterenol's signaling to ERKs. We demonstrate that the activation of isoproterenol of both Rap1 and Ras requires Src. In HEK293 cells, isoproterenol activates Rap1, stimulates Rap1 association with B-Raf, and activates ERKs, all via PKA. In contrast, the activation by isoproterenol of Ras requires Gbetagamma subunits, is independent of PKA, and results in the phosphoinositol 3-kinase-dependent activation of AKT. Interestingly, beta-adrenergic stimulation of both Rap1 and ERKs, but not Ras and AKT, can be blocked by a Src mutant (SrcS17A) that is incapable of being phosphorylated and activated by PKA. Furthermore, a Src mutant (SrcS17D), which mimics PKA phosphorylation at serine 17, stimulates Rap1 activation, Rap1/B-Raf association, and ERK activation but does not stimulate Ras or AKT. These data suggest that Rap1 activation, but not that of Ras, is mediated through the direct phosphorylation of Src by PKA. We propose that the beta(2)-adrenergic receptor activates Src via two independent mechanisms to mediate distinct signaling pathways, one through Galpha(s) to Rap1 and ERKs and the other through Gbetagamma to Ras and AKT.  相似文献   

15.
Rap1A is a Ras-related GTP binding protein which has an amino acid sequence identical to that of Ras in the putative "effector" domain (amino acids 32-40). The binding of Rap1A to Ras-GTPase activating protein (GAP) through this domain is a potential mechanism for explaining the observation that Rap1A can antagonize the ability of oncogenic Ras to transform cells. It was recently shown (Yatani, A., Okabe, K., Polakis, P., Halenbeck, R., McCormick, F., and Brown, A. M. (1990) Cell 61, 769-776) that the activation of M2-muscarinic receptor-coupled K+ channels in heart is inhibited by the addition of exogenous Ras and Ras-GAP. We have made use of this system in the present paper to show that Rap1A is able to effectively block this inhibitory action of Ras-GAP. We observed that both Rap1A-GDP and Rap1A-guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) were able to block the inhibitory effect of Ras-GAP upon channel activation. This effect occurred at picomolar concentrations of Rap1A, and the GTP gamma S-bound form of the protein was consistently found to be more potent than the GDP form. A Rap1A Thr35----Ala mutation which bound GTP gamma S did not prevent K+ channel inhibition by Ras-GAP, suggesting that the antagonism by wild type Rap1A involves an interaction with GAP in the effector domain. The effectiveness of Rap1A to inhibit Ras-GAP is dependent upon the amount of Ras-GAP present in the assay and can also be overcome by the addition of GTP-bound N-Ras (GC-43), suggesting a competitive mechanism is operative. Finally, a truncated form of Ras-GAP (GAP32) which is no longer dependent upon Ras for inhibition of the M2-activated K+ channel is also no longer sensitive to blockade by added Rap1A. These data support the concept of GAP as an effector of Ras action and indicate that Rap1A can serve as an inhibitor of Ras action in a system distinct from cell transformation by a competitive mechanism involving the GAP binding domain of Rap1A.  相似文献   

16.
Rap1, a small GTPase of the Ras family, is ubiquitously expressed and particularly abundant in platelets. Previously we have shown that Rap1 is rapidly activated after stimulation of human platelets with alpha-thrombin. For this activation, a phospholipase C-mediated increase in intracellular calcium is necessary and sufficient. Here we show that thrombin induces a second phase of Rap1 activation, which is mediated by protein kinase C (PKC). Indeed, the PKC activator phorbol 12-myristate 13-acetate induced Rap1 activation, whereas the PKC-inhibitor bisindolylmaleimide inhibited the second, but not the first, phase of Rap1 activation. Activation of the integrin alpha(IIb)beta(3), a downstream target of PKC, with monoclonal antibody LIBS-6 also induced Rap1 activation. However, studies with alpha(IIb)beta(3)-deficient platelets from patients with Glanzmann's thrombasthenia type 1 show that alpha(IIb)beta(3) is not essential for Rap1 activation. Interestingly, induction of platelet aggregation by thrombin resulted in the inhibition of Rap1 activation. This downregulation correlated with the translocation of Rap1 to the Triton X-100-insoluble, cytoskeletal fraction. We conclude that in platelets, alpha-thrombin induces Rap1 activation first by a calcium-mediated pathway independently of PKC and then by a second activation phase mediated by PKC and, in part, integrin alpha(IIb)beta(3). Inactivation of Rap1 is mediated by an aggregation-dependent process that correlates with the translocation of Rap1 to the cytoskeletal fraction.  相似文献   

17.
Rap1 GTPase: functions, regulation, and malignancy   总被引:7,自引:0,他引:7  
Rap1 is a member of the Ras family of small GTPases that is activated by diverse extracellular stimuli in many cell types. It is activated by distinct types of Rap1 guanine nucleotide exchange factors coupled with various receptors or second messengers, while activated Rap1 is down-regulated by Rap1 GTPase-activating proteins, through which Rap1 activation is controlled spatio-temporally. Functionally, Rap1 either interferes with Ras-mediated ERK activation or activates ERK independently of Ras in a cell-context dependent manner. Accumulating evidence also indicates that Rap1 is a major activator of integrins, playing important roles in the regulation of a variety of integrin-dependent cellular functions. Most recently, significant evidence has emerged that dysregulation of Rap1 activation is responsible for the development of malignancy. Recent extensive research has begun to unveil the roles of this controversial small G protein in physiology and diseases.  相似文献   

18.
The small GTPase Rap1 has been implicated in both negative and positive control of Ras-mediated signalling events. We have investigated which extracellular signals can activate Rap1 and whether this activation leads to a modulation of Ras effector signalling, i.e. the activation of ERK and the small GTPase Ral. We found that Rap1 is rapidly activated following stimulation of a large variety of growth factor receptors. These receptors include receptor tyrosine kinases for platelet-derived growth factor (PDGF) and epithelial growth factor (EGF), and G protein-coupled receptors for lysophosphatidic acid (LPA), thrombin and endothelin. At least three distinct pathways may transduce a signal towards Rap1 activation: increase in intracellular calcium, release of diacylglycerol and cAMP synthesis. Surprisingly, activation of endogenous Rap1 fails to affect Ras-dependent ERK activation. In addition, we found that although overexpression of active Rap1 is able to activate the Ral pathway, activation of endogenous Rap1 in fibroblasts does not result in Ral activation. Rap1 also does not negatively influence Ras-mediated Ral activation. We conclude that activation of Rap1 is a common event upon growth factor treatment and that the physiological function of Rap1 is likely to be different from modulation of Ras effector signalling.  相似文献   

19.
20.
Ras and Rap control AMPA receptor trafficking during synaptic plasticity   总被引:30,自引:0,他引:30  
Zhu JJ  Qin Y  Zhao M  Van Aelst L  Malinow R 《Cell》2002,110(4):443-455
Recent studies show that AMPA receptor (-R) trafficking is important in synaptic plasticity. However, the signaling controlling this trafficking is poorly understood. Small GTPases have diverse neuronal functions and their perturbation is responsible for several mental disorders. Here, we examine the small GTPases Ras and Rap in the postsynaptic signaling underlying synaptic plasticity. We show that Ras relays the NMDA-R and CaMKII signaling that drives synaptic delivery of AMPA-Rs during long-term potentiation. In contrast, Rap mediates NMDA-R-dependent removal of synaptic AMPA-Rs that occurs during long-term depression. Ras and Rap exert their effects on AMPA-Rs that contain different subunit composition. Thus, Ras and Rap, whose activity can be controlled by postsynaptic enzymes, serve as independent regulators for potentiating and depressing central synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号